⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 distributionclassifier.java

📁 :<<数据挖掘--实用机器学习技术及java实现>>一书的配套源程序
💻 JAVA
字号:
/* *    This program is free software; you can redistribute it and/or modify *    it under the terms of the GNU General Public License as published by *    the Free Software Foundation; either version 2 of the License, or *    (at your option) any later version. * *    This program is distributed in the hope that it will be useful, *    but WITHOUT ANY WARRANTY; without even the implied warranty of *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the *    GNU General Public License for more details. * *    You should have received a copy of the GNU General Public License *    along with this program; if not, write to the Free Software *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. *//* *    DistributionClassifier.java *    Copyright (C) 1999 Eibe Frank, Len Trigg * */package weka.classifiers;import weka.core.*;/**  * Abstract classification model that produces (for each test instance) * an estimate of the membership in each class  * (ie. a probability distribution). * * @author   Eibe Frank (trigg@cs.waikato.ac.nz) * @author   Len Trigg (trigg@cs.waikato.ac.nz) * @version $Revision: 1.5 $ */public abstract class DistributionClassifier extends Classifier {  /**   * Predicts the class memberships for a given instance. If   * an instance is unclassified, the returned array elements   * must be all zero. If the class is numeric, the array   * must consist of only one element, which contains the   * predicted value.   *   * @param instance the instance to be classified   * @return an array containing the estimated membership    * probabilities of the test instance in each class (this    * should sum to at most 1)   * @exception Exception if distribution could not be    * computed successfully   */  public abstract double[] distributionForInstance(Instance instance)        throws Exception;  /**   * Classifies the given test instance. The instance has to belong to a   * dataset when it's being classified.   *   * @param instance the instance to be classified   * @return the predicted most likely class for the instance or    * Instance.missingValue() if no prediction is made   * @exception Exception if an error occurred during the prediction   */  public double classifyInstance(Instance instance) throws Exception {    double [] dist = distributionForInstance(instance);    if (dist == null) {      throw new Exception("Null distribution predicted");    }    switch (instance.classAttribute().type()) {    case Attribute.NOMINAL:      double max = 0;      int maxIndex = 0;            for (int i = 0; i < dist.length; i++) {	if (dist[i] > max) {	  maxIndex = i;	  max = dist[i];	}      }      if (max > 0) {	return maxIndex;      } else {	return Instance.missingValue();      }    case Attribute.NUMERIC:      return dist[0];    default:      return Instance.missingValue();    }  }}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -