⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 zeror.java

📁 :<<数据挖掘--实用机器学习技术及java实现>>一书的配套源程序
💻 JAVA
字号:
/* *    This program is free software; you can redistribute it and/or modify *    it under the terms of the GNU General Public License as published by *    the Free Software Foundation; either version 2 of the License, or *    (at your option) any later version. * *    This program is distributed in the hope that it will be useful, *    but WITHOUT ANY WARRANTY; without even the implied warranty of *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the *    GNU General Public License for more details. * *    You should have received a copy of the GNU General Public License *    along with this program; if not, write to the Free Software *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. *//* *    ZeroR.java *    Copyright (C) 1999 Eibe Frank * */package weka.classifiers;import java.io.*;import java.util.*;import weka.core.*;/** * Class for building and using a 0-R classifier. Predicts the mean * (for a numeric class) or the mode (for a nominal class). * * @author Eibe Frank (eibe@cs.waikato.ac.nz) * @version $Revision: 1.6 $ */public class ZeroR extends DistributionClassifier   implements WeightedInstancesHandler {  /** The class value 0R predicts. */  private double m_ClassValue;  /** The number of instances in each class (null if class numeric). */  private double [] m_Counts;    /** The class attribute. */  private Attribute m_Class;  /**   * Generates the classifier.   *   * @param instances set of instances serving as training data    * @exception Exception if the classifier has not been generated successfully   */  public void buildClassifier(Instances instances) throws Exception {    m_Class = instances.classAttribute();    m_ClassValue = 0;    switch (instances.classAttribute().type()) {    case Attribute.NUMERIC:      m_Counts = null;      break;    case Attribute.NOMINAL:      m_Counts = new double [instances.numClasses()];      for (int i = 0; i < m_Counts.length; i++) {	m_Counts[i] = 1;      }      break;    default:      throw new Exception("ZeroR can only handle nominal and numeric class"			  + " attributes.");    }    Enumeration enum = instances.enumerateInstances();    while (enum.hasMoreElements()) {      Instance instance = (Instance) enum.nextElement();      if (!instance.classIsMissing()) {	if (instances.classAttribute().isNominal()) {	  m_Counts[(int)instance.classValue()] += instance.weight();	} else {	  m_ClassValue += instance.weight() * instance.classValue();	}      }    }    if (instances.classAttribute().isNumeric()) {      if (Utils.gr(instances.sumOfWeights(), 0)) {	m_ClassValue /= instances.sumOfWeights();      }    } else {      m_ClassValue = Utils.maxIndex(m_Counts);      Utils.normalize(m_Counts);    }  }  /**   * Classifies a given instance.   *   * @param instance the instance to be classified   * @return index of the predicted class   */  public double classifyInstance(Instance instance) {    return m_ClassValue;  }  /**   * Calculates the class membership probabilities for the given test instance.   *   * @param instance the instance to be classified   * @return predicted class probability distribution   * @exception Exception if class is numeric   */  public double [] distributionForInstance(Instance instance)        throws Exception {	     if (m_Counts == null) {      double[] result = new double[1];      result[0] = m_ClassValue;      return result;    } else {      return (double []) m_Counts.clone();    }  }    /**   * Returns a description of the classifier.   *   * @return a description of the classifier as a string.   */  public String toString() {    if (m_Class ==  null) {      return "ZeroR: No model built yet.";    }    if (m_Counts == null) {      return "ZeroR predicts class value: " + m_ClassValue;    } else {      return "ZeroR predicts class value: " + m_Class.value((int) m_ClassValue);    }  }  /**   * Main method for testing this class.   *   * @param argv the options   */  public static void main(String [] argv) {    try {      System.out.println(Evaluation.evaluateModel(new ZeroR(), argv));    } catch (Exception e) {      System.err.println(e.getMessage());    }  }}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -