⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 confusionmatrix.java

📁 :<<数据挖掘--实用机器学习技术及java实现>>一书的配套源程序
💻 JAVA
字号:
/* *    This program is free software; you can redistribute it and/or modify *    it under the terms of the GNU General Public License as published by *    the Free Software Foundation; either version 2 of the License, or *    (at your option) any later version. * *    This program is distributed in the hope that it will be useful, *    but WITHOUT ANY WARRANTY; without even the implied warranty of *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the *    GNU General Public License for more details. * *    You should have received a copy of the GNU General Public License *    along with this program; if not, write to the Free Software *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. *//* *    NominalPrediction.java *    Copyright (C) 2000 Intelligenesis Corp. * */package weka.classifiers.evaluation;import weka.core.Matrix;import weka.core.FastVector;import weka.core.Utils;import weka.classifiers.CostMatrix;/** * Cells of this matrix correspond to counts of the number (or weight) * of predictions for each actual value / predicted value combination. * * @author Len Trigg (len@intelligenesis.net) * @version $Revision: 1.4 $ */public class ConfusionMatrix extends Matrix {  /** Stores the names of the classes */  protected String [] m_ClassNames;  /**   * Creates the confusion matrix with the given class names.   *   * @param classNames an array containing the names the classes.   */  public ConfusionMatrix(String [] classNames) {    super(classNames.length, classNames.length);    m_ClassNames = (String [])classNames.clone();  }  /**   * Makes a copy of this ConfusionMatrix after applying the   * supplied CostMatrix to the cells. The resulting ConfusionMatrix   * can be used to get cost-weighted statistics.   *   * @param costs the CostMatrix.   * @return a ConfusionMatrix that has had costs applied.   * @exception Exception if the CostMatrix is not of the same size   * as this ConfusionMatrix.   */  public ConfusionMatrix makeWeighted(CostMatrix costs) throws Exception {    if (costs.size() != size()) {      throw new Exception("Cost and confusion matrices must be the same size");    }    ConfusionMatrix weighted = new ConfusionMatrix(m_ClassNames);    for (int row = 0; row < size(); row++) {      for (int col = 0; col < size(); col++) {        weighted.setElement(row, col, getElement(row, col) *                             costs.getElement(row, col));      }    }    return weighted;  }  /**   * Creates and returns a clone of this object.   *   * @return a clone of this instance.   * @exception CloneNotSupportedException if an error occurs   */  public Object clone() throws CloneNotSupportedException {    ConfusionMatrix m = (ConfusionMatrix)super.clone();    m.m_ClassNames = (String [])m_ClassNames.clone();    return m;  }  /**   * Gets the number of classes.   *   * @return the number of classes   */  public int size() {    return m_ClassNames.length;  }  /**   * Gets the name of one of the classes.   *   * @param index the index of the class.   * @return the class name.   */  public String className(int index) {    return m_ClassNames[index];  }  /**   * Includes a prediction in the confusion matrix.   *   * @param pred the NominalPrediction to include   * @exception Exception if no valid prediction was made (i.e.    * unclassified).   */  public void addPrediction(NominalPrediction pred) throws Exception {    if (pred.predicted() == NominalPrediction.MISSING_VALUE) {      throw new Exception("No predicted value given.");    }    if (pred.actual() == NominalPrediction.MISSING_VALUE) {      throw new Exception("No actual value given.");    }    addElement((int)pred.actual(), (int)pred.predicted(), pred.weight());  }  /**   * Includes a whole bunch of predictions in the confusion matrix.   *   * @param predictions a FastVector containing the NominalPredictions   * to include   * @exception Exception if no valid prediction was made (i.e.    * unclassified).   */  public void addPredictions(FastVector predictions) throws Exception {    for (int i = 0; i < predictions.size(); i++) {      addPrediction((NominalPrediction)predictions.elementAt(i));    }  }    /**   * Gets the performance with respect to one of the classes   * as a TwoClassStats object.   *   * @param classIndex the index of the class of interest.   * @return the generated TwoClassStats object.   */  public TwoClassStats getTwoClassStats(int classIndex) {    double fp = 0, tp = 0, fn = 0, tn = 0;    for (int row = 0; row < size(); row++) {      for (int col = 0; col < size(); col++) {        if (row == classIndex) {          if (col == classIndex) {            tp += getElement(row, col);          } else {            fn += getElement(row, col);          }                  } else {          if (col == classIndex) {            fp += getElement(row, col);          } else {            tn += getElement(row, col);          }                  }      }    }    return new TwoClassStats(tp, fp, tn, fn);  }  /**   * Gets the number of correct classifications (that is, for which a   * correct prediction was made). (Actually the sum of the weights of   * these classifications)   *   * @return the number of correct classifications    */  public double correct() {    double correct = 0;    for (int i = 0; i < size(); i++) {      correct += getElement(i, i);    }    return correct;  }  /**   * Gets the number of incorrect classifications (that is, for which an   * incorrect prediction was made). (Actually the sum of the weights of   * these classifications)   *   * @return the number of incorrect classifications    */  public double incorrect() {    double incorrect = 0;    for (int row = 0; row < size(); row++) {      for (int col = 0; col < size(); col++) {        if (row != col) {          incorrect += getElement(row, col);        }      }    }    return incorrect;  }  /**   * Gets the number of predictions that were made   * (actually the sum of the weights of predictions where the   * class value was known).   *   * @return the number of predictions with known class   */  public double total() {    double total = 0;    for (int row = 0; row < size(); row++) {      for (int col = 0; col < size(); col++) {        total += getElement(row, col);      }    }    return total;  }  /**   * Returns the estimated error rate.   *   * @return the estimated error rate (between 0 and 1).   */  public double errorRate() {    return incorrect() / total();  }  /**   * Calls toString() with a default title.   *   * @return the confusion matrix as a string   */  public String toString() {    return toString("=== Confusion Matrix ===\n");  }  /**   * Outputs the performance statistics as a classification confusion   * matrix. For each class value, shows the distribution of    * predicted class values.   *   * @param title the title for the confusion matrix   * @return the confusion matrix as a String   */  public String toString(String title) {    StringBuffer text = new StringBuffer();    char [] IDChars = {'a','b','c','d','e','f','g','h','i','j',		       'k','l','m','n','o','p','q','r','s','t',		       'u','v','w','x','y','z'};    int IDWidth;    boolean fractional = false;    // Find the maximum value in the matrix    // and check for fractional display requirement     double maxval = 0;    for (int i = 0; i < size(); i++) {      for (int j = 0; j < size(); j++) {	double current = getElement(i, j);        if (current < 0) {          current *= -10;        }	if (current > maxval) {	  maxval = current;	}	double fract = current - Math.rint(current);	if (!fractional	    && ((Math.log(fract) / Math.log(10)) >= -2)) {	  fractional = true;	}      }    }    IDWidth = 1 + Math.max((int)(Math.log(maxval) / Math.log(10) 				 + (fractional ? 3 : 0)),			     (int)(Math.log(size()) / 				   Math.log(IDChars.length)));    text.append(title).append("\n");    for (int i = 0; i < size(); i++) {      if (fractional) {	text.append(" ").append(num2ShortID(i,IDChars,IDWidth - 3))          .append("   ");      } else {	text.append(" ").append(num2ShortID(i,IDChars,IDWidth));      }    }    text.append("     actual class\n");    for (int i = 0; i< size(); i++) {       for (int j = 0; j < size(); j++) {	text.append(" ").append(		    Utils.doubleToString(getElement(i, j),					 IDWidth,					 (fractional ? 2 : 0)));      }      text.append(" | ").append(num2ShortID(i,IDChars,IDWidth))        .append(" = ").append(m_ClassNames[i]).append("\n");    }    return text.toString();  }  /**   * Method for generating indices for the confusion matrix.   *   * @param num integer to format   * @return the formatted integer as a string   */  private static String num2ShortID(int num, char [] IDChars, int IDWidth) {        char ID [] = new char [IDWidth];    int i;        for(i = IDWidth - 1; i >=0; i--) {      ID[i] = IDChars[num % IDChars.length];      num = num / IDChars.length - 1;      if (num < 0) {	break;      }    }    for(i--; i >= 0; i--) {      ID[i] = ' ';    }    return new String(ID);  }}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -