⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 checkclassifier.java

📁 :<<数据挖掘--实用机器学习技术及java实现>>一书的配套源程序
💻 JAVA
📖 第 1 页 / 共 4 页
字号:
/* *    This program is free software; you can redistribute it and/or modify *    it under the terms of the GNU General Public License as published by *    the Free Software Foundation; either version 2 of the License, or *    (at your option) any later version. * *    This program is distributed in the hope that it will be useful, *    but WITHOUT ANY WARRANTY; without even the implied warranty of *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the *    GNU General Public License for more details. * *    You should have received a copy of the GNU General Public License *    along with this program; if not, write to the Free Software *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. *//* *    CheckClassifier.java *    Copyright (C) 1999 Len Trigg * */package weka.classifiers;import java.io.*;import java.util.*;import weka.core.*;/** * Class for examining the capabilities and finding problems with  * classifiers. If you implement a classifier using the WEKA.libraries, * you should run the checks on it to ensure robustness and correct * operation. Passing all the tests of this object does not mean * bugs in the classifier don't exist, but this will help find some * common ones. <p> *  * Typical usage: <p> * <code>java weka.classifiers.CheckClassifier -W classifier_name  * classifier_options </code><p> *  * CheckClassifier reports on the following: * <ul> *    <li> Classifier abilities <ul> *         <li> Possible command line options to the classifier *         <li> Whether the classifier is a distributionClassifier *         <li> Whether the classifier can predict nominal and/or predict  *              numeric class attributes. Warnings will be displayed if  *              performance is worse than ZeroR *         <li> Whether the classifier can be trained incrementally *         <li> Whether the classifier can handle numeric predictor attributes *         <li> Whether the classifier can handle nominal predictor attributes *         <li> Whether the classifier can handle string predictor attributes *         <li> Whether the classifier can handle missing predictor values *         <li> Whether the classifier can handle missing class values *         <li> Whether a nominal classifier only handles 2 class problems *         <li> Whether the classifier can handle instance weights *         </ul> *    <li> Correct functioning <ul> *         <li> Correct initialisation during buildClassifier (i.e. no result *              changes when buildClassifier called repeatedly) *         <li> Whether incremental training produces the same results *              as during non-incremental training (which may or may not  *              be OK) *         <li> Whether the classifier alters the data pased to it  *              (number of instances, instance order, instance weights, etc) *         </ul> *    <li> Degenerate cases <ul> *         <li> building classifier with zero training instances *         <li> all but one predictor attribute values missing *         <li> all predictor attribute values missing *         <li> all but one class values missing *         <li> all class values missing *         </ul> *    </ul> * Running CheckClassifier with the debug option set will output the  * training and test datasets for any failed tests.<p> * * Valid options are:<p> * * -D <br> * Turn on debugging output.<p> * * -W classname <br> * Specify the full class name of a classifier to perform the  * tests on (required).<p> * * Options after -- are passed to the designated classifier.<p> * * @author Len Trigg (trigg@cs.waikato.ac.nz) * @version $Revision: 1.12 $ */public class CheckClassifier implements OptionHandler {  /*** The classifier to be examined */  protected Classifier m_Classifier = new weka.classifiers.ZeroR();  /** The options to be passed to the base classifier. */  protected String [] m_ClassifierOptions;  /** The results of the analysis as a string */  protected String m_AnalysisResults;  /** Debugging mode, gives extra output if true */  protected boolean m_Debug;  /**   * Returns an enumeration describing the available options   *   * @return an enumeration of all the available options   */  public Enumeration listOptions() {    Vector newVector = new Vector(2);    newVector.addElement(new Option(	      "\tTurn on debugging output.",	      "D", 0, "-D"));    newVector.addElement(new Option(	      "\tFull name of the classifier analysed.\n"	      +"\teg: weka.classifiers.NaiveBayes",	      "W", 1, "-W"));    if ((m_Classifier != null) 	&& (m_Classifier instanceof OptionHandler)) {      newVector.addElement(new Option("", "", 0, 				      "\nOptions specific to classifier "				      + m_Classifier.getClass().getName()				      + ":"));      Enumeration enum = ((OptionHandler)m_Classifier).listOptions();      while (enum.hasMoreElements())	newVector.addElement(enum.nextElement());    }    return newVector.elements();  }  /**   * Parses a given list of options. Valid options are:<p>   *   * -D <br>   * Turn on debugging output.<p>   *   * -W classname <br>   * Specify the full class name of a classifier to perform the    * tests on (required).<p>   *   * Options after -- are passed to the designated classifier    *   * @param options the list of options as an array of strings   * @exception Exception if an option is not supported   */  public void setOptions(String[] options) throws Exception {    setDebug(Utils.getFlag('D', options));        String classifierName = Utils.getOption('W', options);    if (classifierName.length() == 0) {      throw new Exception("A classifier must be specified with"			  + " the -W option.");    }    setClassifier(Classifier.forName(classifierName,				     Utils.partitionOptions(options)));  }  /**   * Gets the current settings of the CheckClassifier.   *   * @return an array of strings suitable for passing to setOptions   */  public String [] getOptions() {    String [] classifierOptions = new String [0];    if ((m_Classifier != null) && 	(m_Classifier instanceof OptionHandler)) {      classifierOptions = ((OptionHandler)m_Classifier).getOptions();    }    String [] options = new String [classifierOptions.length + 4];    int current = 0;    if (getDebug()) {      options[current++] = "-D";    }    if (getClassifier() != null) {      options[current++] = "-W";      options[current++] = getClassifier().getClass().getName();    }    options[current++] = "--";    System.arraycopy(classifierOptions, 0, options, current, 		     classifierOptions.length);    current += classifierOptions.length;    while (current < options.length) {      options[current++] = "";    }    return options;  }  /**   * Begin the tests, reporting results to System.out   */  public void doTests() {    if (getClassifier() == null) {      System.out.println("\n=== No classifier set ===");      return;    }    System.out.println("\n=== Check on Classifier: "		       + getClassifier().getClass().getName()		       + " ===\n");    // Start tests    canTakeOptions();    boolean updateableClassifier = updateableClassifier();    boolean distributionClassifier = distributionClassifier();    boolean weightedInstancesHandler = weightedInstancesHandler();    testsPerClassType(false, updateableClassifier, weightedInstancesHandler);    testsPerClassType(true, updateableClassifier, weightedInstancesHandler);  }  /**   * Set debugging mode   *   * @param debug true if debug output should be printed   */  public void setDebug(boolean debug) {    m_Debug = debug;  }  /**   * Get whether debugging is turned on   *   * @return true if debugging output is on   */  public boolean getDebug() {    return m_Debug;  }  /**   * Set the classifier for boosting.    *   * @param newClassifier the Classifier to use.   */  public void setClassifier(Classifier newClassifier) {    m_Classifier = newClassifier;  }  /**   * Get the classifier used as the classifier   *   * @return the classifier used as the classifier   */  public Classifier getClassifier() {    return m_Classifier;  }  /**   * Test method for this class   */  public static void main(String [] args) {    try {      CheckClassifier check = new CheckClassifier();      try {	check.setOptions(args);	Utils.checkForRemainingOptions(args);      } catch (Exception ex) {	String result = ex.getMessage() + "\nCheckClassifier Options:\n\n";	Enumeration enum = check.listOptions();	while (enum.hasMoreElements()) {	  Option option = (Option) enum.nextElement();	  result += option.synopsis() + "\n" + option.description() + "\n";	}	throw new Exception(result);      }      check.doTests();    } catch (Exception ex) {      System.err.println(ex.getMessage());    }  }  /**   * Run a battery of tests for a given class attribute type   *   * @param numericClass true if the class attribute should be numeric   * @param updateable true if the classifier is updateable   * @param weighted true if the classifier says it handles weights   */  protected void testsPerClassType(boolean numericClass, boolean updateable,				   boolean weighted) {    boolean PNom = canPredict(true, false, numericClass);    boolean PNum = canPredict(false, true, numericClass);    if (PNom || PNum) {      if (weighted) {	instanceWeights(PNom, PNum, numericClass);      }      if (!numericClass) {	canHandleNClasses(PNom, PNum, 4);      }      canHandleZeroTraining(PNom, PNum, numericClass);      boolean handleMissingPredictors = canHandleMissing(PNom, PNum, 							 numericClass, 							 true, false, 20);      if (handleMissingPredictors) {	canHandleMissing(PNom, PNum, numericClass, true, false, 100);      }      boolean handleMissingClass = canHandleMissing(PNom, PNum, numericClass, 						    false, true, 20);      if (handleMissingClass) {	canHandleMissing(PNom, PNum, numericClass, false, true, 100);      }      correctBuildInitialisation(PNom, PNum, numericClass);      datasetIntegrity(PNom, PNum, numericClass,		       handleMissingPredictors, handleMissingClass);      doesntUseTestClassVal(PNom, PNum, numericClass);      if (updateable) {	updatingEquality(PNom, PNum, numericClass);      }    }    /*     * Robustness / Correctness:     *    Whether the classifier can handle string predictor attributes     */  }  /**   * Checks whether the scheme can take command line options.   *   * @return true if the classifier can take options   */  protected boolean canTakeOptions() {    System.out.print("options...");    if (m_Classifier instanceof OptionHandler) {      System.out.println("yes");      if (m_Debug) {	System.out.println("\n=== Full report ===");	Enumeration enum = ((OptionHandler)m_Classifier).listOptions();	while (enum.hasMoreElements()) {	  Option option = (Option) enum.nextElement();	  System.out.print(option.synopsis() + "\n" 			   + option.description() + "\n");	}	System.out.println("\n");      }      return true;    }    System.out.println("no");    return false;  }    /**   * Checks whether the scheme is a distribution classifier.   *   * @return true if the classifier produces distributions   */  protected boolean distributionClassifier() {

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -