⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 bvdecompose.java

📁 :<<数据挖掘--实用机器学习技术及java实现>>一书的配套源程序
💻 JAVA
📖 第 1 页 / 共 2 页
字号:
/* *    This program is free software; you can redistribute it and/or modify *    it under the terms of the GNU General Public License as published by *    the Free Software Foundation; either version 2 of the License, or *    (at your option) any later version. * *    This program is distributed in the hope that it will be useful, *    but WITHOUT ANY WARRANTY; without even the implied warranty of *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the *    GNU General Public License for more details. * *    You should have received a copy of the GNU General Public License *    along with this program; if not, write to the Free Software *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. *//* *    BVDecompose.java *    Copyright (C) 1999 Len Trigg * */package weka.classifiers;import java.io.*;import java.util.*;import weka.core.*;/** * Class for performing a Bias-Variance decomposition on any classifier  * using the method specified in:<p> *  * R. Kohavi & D. Wolpert (1996), <i>Bias plus variance decomposition for  * zero-one loss functions</i>, in Proc. of the Thirteenth International  * Machine Learning Conference (ICML96)  * <a href="http://robotics.stanford.edu/~ronnyk/biasVar.ps"> * download postscript</a>.<p> * * Valid options are:<p> * * -D <br> * Turn on debugging output.<p> * * -W classname <br> * Specify the full class name of a learner to perform the  * decomposition on (required).<p> * * -t filename <br> * Set the arff file to use for the decomposition (required).<p> * * -T num <br> * Specify the number of instances in the training pool (default 100).<p> * * -c num <br> * Specify the index of the class attribute (default last).<p> * * -x num <br> * Set the number of train iterations (default 50). <p> * * -s num <br> * Set the seed for the dataset randomisation (default 1). <p> * * Options after -- are passed to the designated sub-learner. <p> * * @author Len Trigg (trigg@cs.waikato.ac.nz) * @version $Revision: 1.6 $ */public class BVDecompose implements OptionHandler {  /** Debugging mode, gives extra output if true */  protected boolean m_Debug;  /** An instantiated base classifier used for getting and testing options. */  protected Classifier m_Classifier = new weka.classifiers.ZeroR();  /** The options to be passed to the base classifier. */  protected String [] m_ClassifierOptions;  /** The number of train iterations */  protected int m_TrainIterations = 50;  /** The name of the data file used for the decomposition */  protected String m_DataFileName;  /** The index of the class attribute */  protected int m_ClassIndex = -1;  /** The random number seed */  protected int m_Seed = 1;  /** The calculated bias (squared) */  protected double m_Bias;  /** The calculated variance */  protected double m_Variance;  /** The calculated sigma (squared) */  protected double m_Sigma;  /** The error rate */  protected double m_Error;  /** The number of instances used in the training pool */  protected int m_TrainPoolSize = 100;  /**   * Returns an enumeration describing the available options   *   * @return an enumeration of all the available options   */  public Enumeration listOptions() {    Vector newVector = new Vector(7);    newVector.addElement(new Option(	      "\tThe index of the class attribute.\n"+	      "\t(default last)",	      "c", 1, "-c <class index>"));    newVector.addElement(new Option(	      "\tThe name of the arff file used for the decomposition.",	      "t", 1, "-t <name of arff file>"));    newVector.addElement(new Option(	      "\tThe number of instances placed in the training pool.\n"	      + "\tThe remainder will be used for testing. (default 100)",	      "T", 1, "-T <training pool size>"));    newVector.addElement(new Option(	      "\tThe random number seed used.",	      "s", 1, "-s <seed>"));    newVector.addElement(new Option(	      "\tThe number of training repetitions used.\n"	      +"\t(default 50)",	      "x", 1, "-x <num>"));    newVector.addElement(new Option(	      "\tTurn on debugging output.",	      "D", 0, "-D"));    newVector.addElement(new Option(	      "\tFull class name of the learner used in the decomposition.\n"	      +"\teg: weka.classifiers.NaiveBayes",	      "W", 1, "-W <classifier class name>"));    if ((m_Classifier != null) &&	(m_Classifier instanceof OptionHandler)) {      newVector.addElement(new Option(				      "",				      "", 0, "\nOptions specific to learner "				      + m_Classifier.getClass().getName()				      + ":"));      Enumeration enum = ((OptionHandler)m_Classifier).listOptions();      while (enum.hasMoreElements()) {	newVector.addElement(enum.nextElement());      }    }    return newVector.elements();  }  /**   * Parses a given list of options. Valid options are:<p>   *   * -D <br>   * Turn on debugging output.<p>   *   * -W classname <br>   * Specify the full class name of a learner to perform the    * decomposition on (required).<p>   *   * -t filename <br>   * Set the arff file to use for the decomposition (required).<p>   *   * -T num <br>   * Specify the number of instances in the training pool (default 100).<p>   *   * -c num <br>   * Specify the index of the class attribute (default last).<p>   *   * -x num <br>   * Set the number of train iterations (default 50). <p>   *   * -s num <br>   * Set the seed for the dataset randomisation (default 1). <p>   *   * Options after -- are passed to the designated sub-learner. <p>   *   * @param options the list of options as an array of strings   * @exception Exception if an option is not supported   */  public void setOptions(String[] options) throws Exception {    setDebug(Utils.getFlag('D', options));            String classIndex = Utils.getOption('c', options);    if (classIndex.length() != 0) {      if (classIndex.toLowerCase().equals("last")) {	setClassIndex(0);      } else if (classIndex.toLowerCase().equals("first")) {	setClassIndex(1);      } else {	setClassIndex(Integer.parseInt(classIndex));      }    } else {      setClassIndex(0);    }    String trainIterations = Utils.getOption('x', options);    if (trainIterations.length() != 0) {      setTrainIterations(Integer.parseInt(trainIterations));    } else {      setTrainIterations(50);    }    String trainPoolSize = Utils.getOption('T', options);    if (trainPoolSize.length() != 0) {      setTrainPoolSize(Integer.parseInt(trainPoolSize));    } else {      setTrainPoolSize(100);    }    String seedString = Utils.getOption('s', options);    if (seedString.length() != 0) {      setSeed(Integer.parseInt(seedString));    } else {      setSeed(1);    }    String dataFile = Utils.getOption('t', options);    if (dataFile.length() == 0) {      throw new Exception("An arff file must be specified"			  + " with the -t option.");    }    setDataFileName(dataFile);    String classifierName = Utils.getOption('W', options);    if (classifierName.length() == 0) {      throw new Exception("A learner must be specified with the -W option.");    }    setClassifier(Classifier.forName(classifierName,				     Utils.partitionOptions(options)));  }  /**   * Gets the current settings of the CheckClassifier.   *   * @return an array of strings suitable for passing to setOptions   */  public String [] getOptions() {    String [] classifierOptions = new String [0];    if ((m_Classifier != null) && 	(m_Classifier instanceof OptionHandler)) {      classifierOptions = ((OptionHandler)m_Classifier).getOptions();    }    String [] options = new String [classifierOptions.length + 14];    int current = 0;    if (getDebug()) {      options[current++] = "-D";    }    options[current++] = "-c"; options[current++] = "" + getClassIndex();    options[current++] = "-x"; options[current++] = "" + getTrainIterations();    options[current++] = "-T"; options[current++] = "" + getTrainPoolSize();    options[current++] = "-s"; options[current++] = "" + getSeed();    if (getDataFileName() != null) {      options[current++] = "-t"; options[current++] = "" + getDataFileName();    }    if (getClassifier() != null) {      options[current++] = "-W";      options[current++] = getClassifier().getClass().getName();    }    options[current++] = "--";    System.arraycopy(classifierOptions, 0, options, current, 		     classifierOptions.length);    current += classifierOptions.length;    while (current < options.length) {      options[current++] = "";    }    return options;  }    /**   * Get the number of instances in the training pool.   *   * @return number of instances in the training pool.   */  public int getTrainPoolSize() {        return m_TrainPoolSize;  }    /**   * Set the number of instances in the training pool.   *   * @param numTrain number of instances in the training pool.   */  public void setTrainPoolSize(int numTrain) {        m_TrainPoolSize = numTrain;  }    /**   * Set the classifiers being analysed   *   * @param newClassifier the Classifier to use.   */  public void setClassifier(Classifier newClassifier) {    m_Classifier = newClassifier;

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -