⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 multiclassclassifier.java

📁 :<<数据挖掘--实用机器学习技术及java实现>>一书的配套源程序
💻 JAVA
📖 第 1 页 / 共 2 页
字号:
        .distributionForInstance(inst);    }        double[] probs = new double[inst.numClasses()];    for(int i = 0; i < m_ClassFilters.length; i++) {      if (m_Classifiers[i] != null) {        m_ClassFilters[i].input(inst);        m_ClassFilters[i].batchFinished();        double [] current = ((DistributionClassifier)m_Classifiers[i])          .distributionForInstance(m_ClassFilters[i].output());        for (int j = 0; j < m_ClassAttribute.numValues(); j++) {          if (m_ClassFilters[i].getValueRange().isInRange(j)) {            probs[j] += current[1];          } else {            probs[j] += current[0];          }        }      }    }    if (Utils.gr(Utils.sum(probs), 0)) {      Utils.normalize(probs);      return probs;    } else {      return m_ZeroR.distributionForInstance(inst);    }  }  /**   * Prints the classifiers.   */  public String toString() {    if (m_Classifiers == null) {      return "MultiClassClassifier: No model built yet.";    }    StringBuffer text = new StringBuffer();    text.append("MultiClassClassifier\n\n");    for (int i = 0; i < m_Classifiers.length; i++) {      text.append("Classifier ").append(i + 1);      if (m_Classifiers[i] != null) {        if ((m_ClassFilters != null) && (m_ClassFilters[i] != null)) {          text.append(", using indicator values: ");          text.append(m_ClassFilters[i].getValueRange());        }        text.append('\n');        text.append(m_Classifiers[i].toString() + "\n");      } else {        text.append(" Skipped (no training examples)\n");      }    }    return text.toString();  }  /**   * Returns an enumeration describing the available options   *   * @return an enumeration of all the available options   */  public Enumeration listOptions()  {    Vector vec = new Vector(3);    Object c;        vec.addElement(new Option(       "\tSets the error-correction mode. Valid values are 0 (no correction),\n"       +"\t1 (random codes), and 2 (exhaustive code). (default 0)\n",       "E", 1, "-E <num>"));    vec.addElement(new Option(       "\tSets the multiplier when using random codes. (default 2.0)",       "R", 1, "-R <num>"));    vec.addElement(new Option(       "\tSets the base classifier.",       "W", 1, "-W <base classifier>"));        if (m_Classifier != null) {      try {	vec.addElement(new Option("",				  "", 0, "\nOptions specific to classifier "				  + m_Classifier.getClass().getName() + ":"));	Enumeration enum = ((OptionHandler)m_Classifier).listOptions();	while (enum.hasMoreElements()) {	  vec.addElement(enum.nextElement());	}      } catch (Exception e) {      }    }    return vec.elements();  }  /**   * Parses a given list of options. Valid options are:<p>   *   * -E num <br>   * Sets the error-correction mode. Valid values are 0 (no correction),   * 1 (random codes), and 2 (exhaustive code). (default 0) <p>   *   * -R num <br>   * Sets the multiplier when using random codes. (default 2.0)<p>   *   * -W classname <br>   * Specify the full class name of a learner as the basis for    * the multiclassclassifier (required).<p>   *   * @param options the list of options as an array of strings   * @exception Exception if an option is not supported   */  public void setOptions(String[] options) throws Exception {      String errorString = Utils.getOption('E', options);    if (errorString.length() != 0) {      setErrorCorrectionMode(new SelectedTag(Integer.parseInt(errorString),                                              TAGS_ERROR));    } else {      setErrorCorrectionMode(new SelectedTag(ERROR_NONE,                                             TAGS_ERROR));    }    String rfactorString = Utils.getOption('R', options);    if (rfactorString.length() != 0) {      setRandomWidthFactor((new Double(rfactorString)).doubleValue());    } else {      setRandomWidthFactor(2.0);    }    String classifierName = Utils.getOption('W', options);    if (classifierName.length() == 0) {      throw new Exception("A classifier must be specified with"			  + " the -W option.");    }    setDistributionClassifier((DistributionClassifier)                              Classifier.forName(classifierName,                                                 Utils.partitionOptions(options)));  }  /**   * Gets the current settings of the Classifier.   *   * @return an array of strings suitable for passing to setOptions   */  public String [] getOptions() {        String [] classifierOptions = new String [0];    if ((m_Classifier != null) &&	(m_Classifier instanceof OptionHandler)) {      classifierOptions = ((OptionHandler)m_Classifier).getOptions();    }    String [] options = new String [classifierOptions.length + 7];    int current = 0;    options[current++] = "-E";    options[current++] = "" + m_ErrorMode;        options[current++] = "-R";    options[current++] = "" + m_RandomWidthFactor;        if (getDistributionClassifier() != null) {      options[current++] = "-W";      options[current++] = getDistributionClassifier().getClass().getName();    }    options[current++] = "--";    System.arraycopy(classifierOptions, 0, options, current, 		     classifierOptions.length);    current += classifierOptions.length;    while (current < options.length) {      options[current++] = "";    }    return options;  }  /**   * @return a description of the classifier suitable for   * displaying in the explorer/experimenter gui   */  public String globalInfo() {    return "A metaclassifier for handling multi-class datasets with 2-class "      + "distribution classifiers. This classifier is also capable of "      + "applying error correcting output codes for increased accuracy.";  }  /**   * @return tip text for this property suitable for   * displaying in the explorer/experimenter gui   */  public String randomWidthFactorTipText() {    return "Sets the width multiplier when using random codes. The number "      + "of codes generated will be thus number multiplied by the number of "      + "classes.";  }  /**   * Gets the multiplier when generating random codes. Will generate   * numClasses * m_RandomWidthFactor codes.   *   * @return the width multiplier   */  public double getRandomWidthFactor() {    return m_RandomWidthFactor;  }    /**   * Sets the multiplier when generating random codes. Will generate   * numClasses * m_RandomWidthFactor codes.   *   * @param newRandomWidthFactor the new width multiplier   */  public void setRandomWidthFactor(double newRandomWidthFactor) {    m_RandomWidthFactor = newRandomWidthFactor;  }    /**   * @return tip text for this property suitable for   * displaying in the explorer/experimenter gui   */  public String errorCorrectionModeTipText() {    return "Sets whether error correction will be used. The default method "      + "is no error correction: one classifier will be built per class value. "      + "Increased accuracy can be obtained by using error correcting output "      + "codes. \"Random\" generates random output codes (the number of "      + "which is determined by the number of classes and the width "      + "multiplier). \"Exhaustive\" generates one classifier for each "      + "(non-redundant) combination of class values - beware that this "      + "increases exponentially in the number of class values. We have yet "      + "to implement BCH codes (feel free to do so).";   }  /**   * Gets the error correction mode used. Will be one of   * ERROR_NONE, ERROR_RANDOM, or ERROR_EXHAUSTIVE.   *   * @return the current error correction mode.   */  public SelectedTag getErrorCorrectionMode() {          return new SelectedTag(m_ErrorMode, TAGS_ERROR);  }  /**   * Sets the error correction mode used. Will be one of   * ERROR_NONE, ERROR_RANDOM, or ERROR_EXHAUSTIVE.   *   * @param newMethod the new error correction mode.   */  public void setErrorCorrectionMode(SelectedTag newMethod) {        if (newMethod.getTags() == TAGS_ERROR) {      m_ErrorMode = newMethod.getSelectedTag().getID();    }  }  /**   * @return tip text for this property suitable for   * displaying in the explorer/experimenter gui   */  public String distributionClassifierTipText() {    return "Sets the DistributionClassifier used as the basis for "      + "the multi-class classifier.";  }  /**   * Set the base classifier.    *   * @param newClassifier the Classifier to use.   */  public void setDistributionClassifier(DistributionClassifier newClassifier) {    m_Classifier = newClassifier;  }  /**   * Get the classifier used as the classifier   *   * @return the classifier used as the classifier   */  public DistributionClassifier getDistributionClassifier() {    return m_Classifier;  }  /**   * Main method for testing this class.   *   * @param argv the options   */  public static void main(String [] argv) {    DistributionClassifier scheme;    try {      scheme = new MultiClassClassifier();      System.out.println(Evaluation.evaluateModel(scheme, argv));    } catch (Exception e) {      System.err.println(e.getMessage());    }  }}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -