⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 logitboost.java

📁 :<<数据挖掘--实用机器学习技术及java实现>>一书的配套源程序
💻 JAVA
📖 第 1 页 / 共 2 页
字号:
/* *    This program is free software; you can redistribute it and/or modify *    it under the terms of the GNU General Public License as published by *    the Free Software Foundation; either version 2 of the License, or *    (at your option) any later version. * *    This program is distributed in the hope that it will be useful, *    but WITHOUT ANY WARRANTY; without even the implied warranty of *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the *    GNU General Public License for more details. * *    You should have received a copy of the GNU General Public License *    along with this program; if not, write to the Free Software *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. *//* *    LogitBoost.java *    Copyright (C) 1999 Len Trigg * */package weka.classifiers;import java.io.*;import java.util.*;import weka.core.*;/** * Class for boosting any classifier that can handle weighted instances. * This class performs classification using a regression scheme as the  * base learner, and can handle multi-class problems.  For more * information, see<p> *  * Friedman, J., T. Hastie and R. Tibshirani (1998) <i>Additive Logistic * Regression: a Statistical View of Boosting</i>  * <a href="ftp://stat.stanford.edu/pub/friedman/boost.ps">download  * postscript</a>. <p> * * Valid options are:<p> * * -D <br> * Turn on debugging output.<p> * * -W classname <br> * Specify the full class name of a weak learner as the basis for  * boosting (required).<p> * * -I num <br> * Set the number of boost iterations (default 10). <p> * * -Q <br> * Use resampling instead of reweighting.<p> * * -S seed <br> * Random number seed for resampling (default 1).<p> * * -P num <br> * Set the percentage of weight mass used to build classifiers * (default 100). <p> * * Options after -- are passed to the designated learner.<p> * * @author Len Trigg (trigg@cs.waikato.ac.nz) * @version $Revision: 1.18 $ */public class LogitBoost extends DistributionClassifier   implements OptionHandler, Sourcable {  // To maintain the same version number after adding m_ClassAttribute  static final long serialVersionUID = -217733168393629381L;  /** Array for storing the generated base classifiers. */  protected Classifier [][] m_Classifiers;  /** An instantiated base classifier used for getting and testing options */  protected Classifier m_Classifier = new weka.classifiers.DecisionStump();  /** The maximum number of boost iterations */  protected int m_MaxIterations = 10;  /** The number of classes */  protected int m_NumClasses;  /** The number of successfully generated base classifiers. */  protected int m_NumIterations;  /** Weight thresholding. The percentage of weight mass used in training */  protected int m_WeightThreshold = 100;  /** Debugging mode, gives extra output if true */  protected boolean m_Debug;  /** A very small number, below which weights cannot fall */  protected static final double VERY_SMALL = 2 * Double.MIN_VALUE;  /** A threshold for responses (Friedman suggests between 2 and 4) */  protected static final double Z_MAX = 4;  /** Dummy dataset with a numeric class */  protected Instances m_NumericClassData;  /** The actual class attribute (for getting class names) */  protected Attribute m_ClassAttribute;  /** Use boosting with reweighting? */  protected boolean m_UseResampling;    /** Seed for boosting with resampling. */  protected int m_Seed = 1;  /**   * Select only instances with weights that contribute to    * the specified quantile of the weight distribution   *   * @param data the input instances   * @param quantile the specified quantile eg 0.9 to select    * 90% of the weight mass   * @return the selected instances   */  protected Instances selectWeightQuantile(Instances data, double quantile) {     int numInstances = data.numInstances();    Instances trainData = new Instances(data, numInstances);    double [] weights = new double [numInstances];    double sumOfWeights = 0;    for (int i = 0; i < numInstances; i++) {      weights[i] = data.instance(i).weight();      sumOfWeights += weights[i];    }    double weightMassToSelect = sumOfWeights * quantile;    int [] sortedIndices = Utils.sort(weights);    // Select the instances    sumOfWeights = 0;    for (int i = numInstances-1; i >= 0; i--) {      Instance instance = (Instance)data.instance(sortedIndices[i]).copy();      trainData.add(instance);      sumOfWeights += weights[sortedIndices[i]];      if ((sumOfWeights > weightMassToSelect) && 	  (i > 0) && 	  (weights[sortedIndices[i]] != weights[sortedIndices[i-1]])) {	break;      }    }    if (m_Debug) {      System.err.println("Selected " + trainData.numInstances()			 + " out of " + numInstances);    }    return trainData;  }  /**   * Convert from function responses to probabilities   *   * @param R an array containing the responses from each function   * @param j the class value of interest   * @return the probability prediction for j   */  protected static double RtoP(double []R, int j) {    double Rcenter = 0;    for (int i = 0; i < R.length; i++) {      Rcenter += R[i];    }    Rcenter /= R.length;    double Rsum = 0;    for (int i = 0; i < R.length; i++) {      Rsum += Math.exp(R[i] - Rcenter);    }   return Math.exp(R[j]) / Rsum;  }  /**   * Returns an enumeration describing the available options   *   * @return an enumeration of all the available options   */  public Enumeration listOptions() {    Vector newVector = new Vector(3);    newVector.addElement(new Option(	      "\tTurn on debugging output.",	      "D", 0, "-D"));    newVector.addElement(new Option(	      "\tMaximum number of boost iterations.\n"	      +"\t(default 10)",	      "I", 1, "-I <num>"));    newVector.addElement(new Option(	      "\tUse resampling for boosting.",	      "Q", 0, "-Q"));    newVector.addElement(new Option(	      "\tSeed for resampling. (Default 1)",	      "S", 1, "-S <num>"));    newVector.addElement(new Option(	      "\tPercentage of weight mass to base training on.\n"	      +"\t(default 100, reduce to around 90 speed up)",	      "P", 1, "-P <percent>"));    newVector.addElement(new Option(	      "\tFull name of 'weak' learner to boost.\n"	      +"\teg: weka.classifiers.DecisionStump",	      "W", 1, "-W <learner class name>"));    if ((m_Classifier != null) &&	(m_Classifier instanceof OptionHandler)) {      newVector.addElement(new Option(	  "",	  "", 0, "\nOptions specific to weak learner "	  + m_Classifier.getClass().getName() + ":"));      Enumeration enum = ((OptionHandler)m_Classifier).listOptions();      while (enum.hasMoreElements()) {	newVector.addElement(enum.nextElement());      }    }    return newVector.elements();  }  /**   * Parses a given list of options. Valid options are:<p>   *   * -D <br>   * Turn on debugging output.<p>   *   * -W classname <br>   * Specify the full class name of a weak learner as the basis for    * boosting (required).<p>   *   * -I num <br>   * Set the number of boost iterations (default 10). <p>   *   * -Q <br>   * Use resampling instead of reweighting.<p>   * -S seed <br>   * Random number seed for resampling (default 1).<p>   *   * -P num <br>   * Set the percentage of weight mass used to build classifiers   * (default 100). <p>   *   * Options after -- are passed to the designated learner.<p>   *   * @param options the list of options as an array of strings   * @exception Exception if an option is not supported   */  public void setOptions(String[] options) throws Exception {        setDebug(Utils.getFlag('D', options));        String boostIterations = Utils.getOption('I', options);    if (boostIterations.length() != 0) {      setMaxIterations(Integer.parseInt(boostIterations));    } else {      setMaxIterations(10);    }    String thresholdString = Utils.getOption('P', options);    if (thresholdString.length() != 0) {      setWeightThreshold(Integer.parseInt(thresholdString));    } else {      setWeightThreshold(100);    }    setUseResampling(Utils.getFlag('Q', options));    if (m_UseResampling && (thresholdString.length() != 0)) {      throw new Exception("Weight pruning with resampling"+			  "not allowed.");    }    String seedString = Utils.getOption('S', options);    if (seedString.length() != 0) {      setSeed(Integer.parseInt(seedString));    } else {      setSeed(1);    }    String classifierName = Utils.getOption('W', options);    if (classifierName.length() == 0) {      throw new Exception("A classifier must be specified with"			  + " the -W option.");    }    setClassifier(Classifier.forName(classifierName,				     Utils.partitionOptions(options)));  }  /**   * Gets the current settings of the Classifier.   *   * @return an array of strings suitable for passing to setOptions   */  public String [] getOptions() {    String [] classifierOptions = new String [0];    if ((m_Classifier != null) && 	(m_Classifier instanceof OptionHandler)) {      classifierOptions = ((OptionHandler)m_Classifier).getOptions();    }    String [] options = new String [classifierOptions.length + 9];    int current = 0;    if (getDebug()) {      options[current++] = "-D";    }        if (getUseResampling()) {      options[current++] = "-Q";    } else {      options[current++] = "-P";       options[current++] = "" + getWeightThreshold();    }    options[current++] = "-I"; options[current++] = "" + getMaxIterations();    if (getClassifier() != null) {      options[current++] = "-W";      options[current++] = getClassifier().getClass().getName();    }    options[current++] = "--";    System.arraycopy(classifierOptions, 0, options, current, 		     classifierOptions.length);    current += classifierOptions.length;    while (current < options.length) {      options[current++] = "";    }    return options;  }  /**   * Set resampling mode   *   * @param resampling true if resampling should be done   */  public void setUseResampling(boolean r) {        m_UseResampling = r;  }  /**   * Get whether resampling is turned on   *   * @return true if resampling output is on   */  public boolean getUseResampling() {        return m_UseResampling;  }  /**   * Set seed for resampling.   *   * @param seed the seed for resampling   */  public void setSeed(int seed) {    m_Seed = seed;  }  /**   * Get seed for resampling.   *   * @return the seed for resampling   */  public int getSeed() {    return m_Seed;  }  /**   * Set the classifier for boosting. The learner should be able to   * handle numeric class attributes.

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -