⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 id3.java

📁 :<<数据挖掘--实用机器学习技术及java实现>>一书的配套源程序
💻 JAVA
字号:
/* *    This program is free software; you can redistribute it and/or modify *    it under the terms of the GNU General Public License as published by *    the Free Software Foundation; either version 2 of the License, or *    (at your option) any later version. * *    This program is distributed in the hope that it will be useful, *    but WITHOUT ANY WARRANTY; without even the implied warranty of *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the *    GNU General Public License for more details. * *    You should have received a copy of the GNU General Public License *    along with this program; if not, write to the Free Software *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. *//* *    Id3.java *    Copyright (C) 1999 Eibe Frank * */package weka.classifiers;import weka.core.*;import java.io.*;import java.util.*;/** * Class implementing an Id3 decision tree classifier. For more * information, see<p> * * R. Quinlan (1986). <i>Induction of decision * trees</i>. Machine Learning. Vol.1, No.1, pp. 81-106.<p> * * @author Eibe Frank (eibe@cs.waikato.ac.nz) * @version $Revision: 1.7 $  */public class Id3 extends DistributionClassifier {  /** The node's successors. */   private Id3[] m_Successors;  /** Attribute used for splitting. */  private Attribute m_Attribute;  /** Class value if node is leaf. */  private double m_ClassValue;  /** Class distribution if node is leaf. */  private double[] m_Distribution;  /** Class attribute of dataset. */  private Attribute m_ClassAttribute;  /**   * Builds Id3 decision tree classifier.   *   * @param data the training data   * @exception Exception if classifier can't be built successfully   */  public void buildClassifier(Instances data) throws Exception {    if (!data.classAttribute().isNominal()) {      throw new Exception("Id3: nominal class, please.");    }    Enumeration enumAtt = data.enumerateAttributes();    while (enumAtt.hasMoreElements()) {      Attribute attr = (Attribute) enumAtt.nextElement();      if (!attr.isNominal()) {        throw new Exception("Id3: only nominal attributes, please.");      }      Enumeration enum = data.enumerateInstances();      while (enum.hasMoreElements()) {        if (((Instance) enum.nextElement()).isMissing(attr)) {          throw new Exception("Id3: no missing values, please.");        }      }    }    data = new Instances(data);    data.deleteWithMissingClass();     makeTree(data);  }  /**   * Method building Id3 tree.   *   * @param data the training data   * @exception Exception if decision tree can't be built successfully   */  private void makeTree(Instances data) throws Exception {    // Check if no instances have reached this node.    if (data.numInstances() == 0) {      m_Attribute = null;      m_ClassValue = Instance.missingValue();      m_Distribution = new double[data.numClasses()];      return;    }    // Compute attribute with maximum information gain.    double[] infoGains = new double[data.numAttributes()];    Enumeration attEnum = data.enumerateAttributes();    while (attEnum.hasMoreElements()) {      Attribute att = (Attribute) attEnum.nextElement();      infoGains[att.index()] = computeInfoGain(data, att);    }    m_Attribute = data.attribute(Utils.maxIndex(infoGains));        // Make leaf if information gain is zero.     // Otherwise create successors.    if (Utils.eq(infoGains[m_Attribute.index()], 0)) {      m_Attribute = null;      m_Distribution = new double[data.numClasses()];      Enumeration instEnum = data.enumerateInstances();      while (instEnum.hasMoreElements()) {	Instance inst = (Instance) instEnum.nextElement();	m_Distribution[(int) inst.classValue()]++;      }      Utils.normalize(m_Distribution);      m_ClassValue = Utils.maxIndex(m_Distribution);      m_ClassAttribute = data.classAttribute();    } else {      Instances[] splitData = splitData(data, m_Attribute);      m_Successors = new Id3[m_Attribute.numValues()];      for (int j = 0; j < m_Attribute.numValues(); j++) {	m_Successors[j] = new Id3();	m_Successors[j].buildClassifier(splitData[j]);      }    }  }  /**   * Classifies a given test instance using the decision tree.   *   * @param instance the instance to be classified   * @return the classification   */  public double classifyInstance(Instance instance) {    if (m_Attribute == null) {      return m_ClassValue;    } else {      return m_Successors[(int) instance.value(m_Attribute)].	  classifyInstance(instance);    }  }  /**   * Computes class distribution for instance using decision tree.   *   * @param instance the instance for which distribution is to be computed   * @return the class distribution for the given instance   */  public double[] distributionForInstance(Instance instance) {    if (m_Attribute == null) {      return m_Distribution;    } else {       return m_Successors[(int) instance.value(m_Attribute)].	  distributionForInstance(instance);    }  }  /**   * Prints the decision tree using the private toString method from below.   *   * @return a textual description of the classifier   */  public String toString() {    if ((m_Distribution == null) && (m_Successors == null)) {      return "Id3: No model built yet.";    }    return "Id3\n\n" + toString(0);  }  /**   * Computes information gain for an attribute.   *   * @param data the data for which info gain is to be computed   * @param att the attribute   * @return the information gain for the given attribute and data   */  private double computeInfoGain(Instances data, Attribute att)     throws Exception {    double infoGain = computeEntropy(data);    Instances[] splitData = splitData(data, att);    for (int j = 0; j < att.numValues(); j++) {      if (splitData[j].numInstances() > 0) {	infoGain -= ((double) splitData[j].numInstances() /		     (double) data.numInstances()) *	  computeEntropy(splitData[j]);      }    }    return infoGain;  } /**  * Computes the entropy of a dataset.  *   * @param data the data for which entropy is to be computed  * @return the entropy of the data's class distribution  */  private double computeEntropy(Instances data) throws Exception {    double [] classCounts = new double[data.numClasses()];    Enumeration instEnum = data.enumerateInstances();    while (instEnum.hasMoreElements()) {      Instance inst = (Instance) instEnum.nextElement();      classCounts[(int) inst.classValue()]++;    }    double entropy = 0;    for (int j = 0; j < data.numClasses(); j++) {      if (classCounts[j] > 0) {        entropy -= classCounts[j] * Utils.log2(classCounts[j]);      }    }    entropy /= (double) data.numInstances();    return entropy + Utils.log2(data.numInstances());  }  /**   * Splits a dataset according to the values of a nominal attribute.   *   * @param data the data which is to be split   * @param att the attribute to be used for splitting   * @return the sets of instances produced by the split   */  private Instances[] splitData(Instances data, Attribute att) {    Instances[] splitData = new Instances[att.numValues()];    for (int j = 0; j < att.numValues(); j++) {      splitData[j] = new Instances(data, data.numInstances());    }    Enumeration instEnum = data.enumerateInstances();    while (instEnum.hasMoreElements()) {      Instance inst = (Instance) instEnum.nextElement();      splitData[(int) inst.value(att)].add(inst);    }    return splitData;  }  /**   * Outputs a tree at a certain level.   *   * @param level the level at which the tree is to be printed   */  private String toString(int level) {    StringBuffer text = new StringBuffer();        if (m_Attribute == null) {      if (Instance.isMissingValue(m_ClassValue)) {        text.append(": null");      } else {        text.append(": "+m_ClassAttribute.value((int) m_ClassValue));      }     } else {      for (int j = 0; j < m_Attribute.numValues(); j++) {        text.append("\n");        for (int i = 0; i < level; i++) {          text.append("|  ");	}        text.append(m_Attribute.name() + " = " + m_Attribute.value(j));        text.append(m_Successors[j].toString(level + 1));      }    }    return text.toString();  }  /**   * Main method.   *   * @param args the options for the classifier   */  public static void main(String[] args) {    try {      System.out.println(Evaluation.evaluateModel(new Id3(), args));    } catch (Exception e) {      System.err.println(e.getMessage());    }  }}    

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -