⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 hyperpipes.java

📁 :<<数据挖掘--实用机器学习技术及java实现>>一书的配套源程序
💻 JAVA
字号:
/* *    This program is free software; you can redistribute it and/or modify *    it under the terms of the GNU General Public License as published by *    the Free Software Foundation; either version 2 of the License, or *    (at your option) any later version. * *    This program is distributed in the hope that it will be useful, *    but WITHOUT ANY WARRANTY; without even the implied warranty of *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the *    GNU General Public License for more details. * *    You should have received a copy of the GNU General Public License *    along with this program; if not, write to the Free Software *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. *//* *    HyperPipes.java *    Copyright (C) 1999 Intelligenesis Corp. * */package weka.classifiers;import weka.core.Attribute;import weka.core.Instance;import weka.core.Instances;import weka.core.Utils;import weka.classifiers.DistributionClassifier;import weka.classifiers.Evaluation;import java.io.*;/** * Class implementing a HyperPipe classifier. For each category a * HyperPipe is constructed that contains all points of that category  * (essentially records the attribute bounds observed for each category). * Test instances are classified according to the category that most  * contains the instance).  * Does not handle numeric class, or missing values in test cases. Extremely * simple algorithm, but has the advantage of being extremely fast, and * works quite well when you have smegloads of attributes. * * @author Lucio de Souza Coelho (lucio@intelligenesis.net) * @author Len Trigg (len@intelligenesis.net) * @version $Revision: 1.7 $ */ public class HyperPipes extends DistributionClassifier {  /** The index of the class attribute */  protected int m_ClassIndex;  /** The structure of the training data */  protected Instances m_Instances;  /** Stores the HyperPipe for each class */  protected HyperPipe [] m_HyperPipes;  /**   * Represents an n-dimensional structure that bounds all instances    * passed to it (generally all of a given class value).   */  class HyperPipe implements Serializable {    /** Contains the numeric bounds of all instances in the HyperPipe */    protected double [][] m_NumericBounds;    /** Contains the nominal bounds of all instances in the HyperPipe */    protected boolean [][] m_NominalBounds;    /**     * Creates the HyperPipe as the n-dimensional parallel-piped      * with minimum volume containing all the points in     * pointSet.     *     * @param instances all instances belonging to the same class     * @exception Exception if missing values are found     */    public HyperPipe(Instances instances) throws Exception {            m_NumericBounds = new double [instances.numAttributes()][];      m_NominalBounds = new boolean [instances.numAttributes()][];      for (int i = 0; i < instances.numAttributes(); i++) {	switch (instances.attribute(i).type()) {	case Attribute.NUMERIC:	  m_NumericBounds[i] = new double [2];	  m_NumericBounds[i][0] = Double.POSITIVE_INFINITY;	  m_NumericBounds[i][1] = Double.NEGATIVE_INFINITY;	  break;	case Attribute.NOMINAL:	  m_NominalBounds[i] = new boolean [instances.attribute(i).numValues()];	  break;	default:	  throw new Exception("Only numeric and nominal attributes allowed");	}      }      for (int i = 0; i < instances.numInstances(); i++) {	addInstance(instances.instance(i));      }    }    /**     * Updates the bounds arrays with a single instance. Missing values     * are ignored (i.e. they don't change the bounds for that attribute)     *     * @param instance the instance     * @exception Exception if any missing values are encountered     */    public void addInstance(Instance instance) throws Exception {      for (int j = 0; j < instance.numAttributes(); j++) {	if ((j != m_ClassIndex) && (!instance.isMissing(j))) {	  double current = instance.value(j);	  if (m_NumericBounds[j] != null) { // i.e. a numeric attribute	    if (current < m_NumericBounds[j][0])	      m_NumericBounds[j][0] = current;	    if (current > m_NumericBounds[j][1])	      m_NumericBounds[j][1] = current;	  } else { // i.e. a nominal attribute	    m_NominalBounds[j][(int) current] = true;	  }	}      }    }    /**     * Returns the fraction of the dimensions of a given instance with     * values lying within the corresponding bounds of the HyperPipe.     *     * @param instance the instance     * @exception Exception if any missing values are encountered     */    public double partialContains(Instance instance) throws Exception {            int count = 0;      for (int i = 0; i < instance.numAttributes(); i++) {	if (i == m_ClassIndex) {	  continue;	}	if (instance.isMissing(i)) {	  continue;	}	double current = instance.value(i);	if (m_NumericBounds[i] != null) { // i.e. a numeric attribute	  if ((current >= m_NumericBounds[i][0]) 	      && (current <= m_NumericBounds[i][1])) {	    count++;	  }	} else { // i.e. a nominal attribute	  if (m_NominalBounds[i][(int) current]) {	    count++;	  }	}      }      return ((double)count) / (instance.numAttributes() - 1);    }  }  /**   * Generates the classifier.   *   * @param instances set of instances serving as training data    * @exception Exception if the classifier has not been generated successfully   */  public void buildClassifier(Instances instances) throws Exception{        if (instances.classIndex() == -1) {      throw new Exception("No class attribute assigned");    }    m_ClassIndex = instances.classIndex();    m_Instances = new Instances(instances, 0); // Copy the structure for ref    // Create the HyperPipe for each class    m_HyperPipes = new HyperPipe [instances.numClasses()];    for (int i = 0; i < m_HyperPipes.length; i++) {      m_HyperPipes[i] = new HyperPipe(new Instances(instances, 0));    }    // Add the instances    for (int i = 0; i < instances.numInstances(); i++) {      updateClassifier(instances.instance(i));    }  }  /**   * Updates the classifier.   *   * @param instance the instance to be put into the classifier   * @exception Exception if the instance could not be included successfully   */  public void updateClassifier(Instance instance) throws Exception {      if (instance.classIsMissing()) {      return;    }    m_HyperPipes[(int) instance.classValue()].addInstance(instance);  }  /**   * Classifies the given test instance.   *   * @param instance the instance to be classified   * @return the predicted class for the instance    * @exception Exception if the instance can't be classified   */  public double [] distributionForInstance(Instance instance) throws Exception {            double [] dist = new double[m_HyperPipes.length];    for (int j = 0; j < m_HyperPipes.length; j++) {      dist[j] = m_HyperPipes[j].partialContains(instance);    }    Utils.normalize(dist);    return dist;  }  /**   * Returns a description of this classifier.   *   * @return a description of this classifier as a string.   */  public String toString() {    if (m_HyperPipes == null) {      return ("HyperPipes classifier");    }    StringBuffer text = new StringBuffer("HyperPipes classifier\n");    /* Perhaps print out the bounds for each HyperPipe.    for (int i = 0; i < m_HyperPipes.length; i++) {      text.append("HyperPipe for class: " 		  + m_Instances.attribute(m_ClassIndex).value(i) + "\n");      text.append(m_HyperPipes[i] + "\n\n");    }    */    return text.toString();  }  /**   * Main method for testing this class.   *   * @param argv should contain command line arguments for evaluation   * (see Evaluation).   */  public static void main(String [] argv) {    try {      System.out.println(Evaluation.evaluateModel(new HyperPipes(), argv));    } catch (Exception e) {      System.err.println(e.getMessage());    }  }}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -