⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 attributeselectedclassifier.java

📁 :<<数据挖掘--实用机器学习技术及java实现>>一书的配套源程序
💻 JAVA
📖 第 1 页 / 共 2 页
字号:
/* *    This program is free software; you can redistribute it and/or modify *    it under the terms of the GNU General Public License as published by *    the Free Software Foundation; either version 2 of the License, or *    (at your option) any later version. * *    This program is distributed in the hope that it will be useful, *    but WITHOUT ANY WARRANTY; without even the implied warranty of *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the *    GNU General Public License for more details. * *    You should have received a copy of the GNU General Public License *    along with this program; if not, write to the Free Software *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. *//* *    AttributeSelectedClassifier.java *    Copyright (C) 2000 Mark Hall * */package weka.classifiers;import java.io.*;import java.util.*;import weka.core.*;import weka.attributeSelection.*;/** * Class for running an arbitrary classifier on data that has been reduced * through attribute selection. <p> * * Valid options from the command line are:<p> * * -B classifierstring <br> * Classifierstring should contain the full class name of a classifier * followed by options to the classifier. * (required).<p> * * -E evaluatorstring <br> * Evaluatorstring should contain the full class name of an attribute * evaluator followed by any options. * (required).<p> * * -S searchstring <br> * Searchstring should contain the full class name of a search method * followed by any options. * (required). <p> * * @author Mark Hall (mhall@cs.waikato.ac.nz) * @version $Revision: 1.7 $ */public class AttributeSelectedClassifier extends DistributionClassifier implements OptionHandler, AdditionalMeasureProducer {  /** The classifier */  protected Classifier m_Classifier = new weka.classifiers.ZeroR();  /** The attribute selection object */  protected AttributeSelection m_AttributeSelection = null;  /** The attribute evaluator to use */  protected ASEvaluation m_Evaluator =     new weka.attributeSelection.CfsSubsetEval();  /** The search method to use */  protected ASSearch m_Search = new weka.attributeSelection.BestFirst();  /** The header of the dimensionally reduced data */  protected Instances m_ReducedHeader;  /** The number of class vals in the training data (1 if class is numeric) */  protected int m_numClasses;  /** The number of attributes selected by the attribute selection phase */  protected double m_numAttributesSelected;  /** The time taken to select attributes in milliseconds */  protected double m_selectionTime;  /** The time taken to select attributes AND build the classifier */  protected double m_totalTime;   /**   * Returns a string describing this search method   * @return a description of the search method suitable for   * displaying in the explorer/experimenter gui   */  public String globalInfo() {    return "Dimensionality of training and test data is reduced by "      +"attribute selection before being passed on to a classifier.";  }  /**   * Returns an enumeration describing the available options   *   * @return an enumeration of all the available options   */  public Enumeration listOptions() {     Vector newVector = new Vector(3);    newVector.addElement(new Option(	      "\tFull class name of classifier to use, followed\n"	      + "\tby scheme options. (required)\n"	      + "\teg: \"weka.classifiers.NaiveBayes -D\"",	      "B", 1, "-B <classifier specification>"));        newVector.addElement(new Option(	      "\tFull class name of attribute evaluator, followed\n"	      + "\tby its options. (required)\n"	      + "\teg: \"weka.attributeSelection.CfsSubsetEval -L\"",	      "E", 1, "-E <attribute evaluator specification>"));    newVector.addElement(new Option(	      "\tFull class name of search method, followed\n"	      + "\tby its options. (required)\n"	      + "\teg: \"weka.attributeSelection.BestFirst -D 1\"",	      "S", 1, "-S <attribute evaluator specification>"));    return newVector.elements();  }  /**   * Parses a given list of options. Valid options are:<p>   *   * -B classifierstring <br>   * Classifierstring should contain the full class name of a classifier   * followed by options to the classifier.   * (required).<p>   *   * -E evaluatorstring <br>   * Evaluatorstring should contain the full class name of an attribute   * evaluator followed by any options.   * (required).<p>   *   * -S searchstring <br>   * Searchstring should contain the full class name of a search method   * followed by any options.   * (required). <p>   *   * @param options the list of options as an array of strings   * @exception Exception if an option is not supported   */  public void setOptions(String[] options) throws Exception {    String classifierString = Utils.getOption('B', options);    if (classifierString.length() == 0) {      throw new Exception("A classifier must be specified"			  + " with the -B option.");    }    String [] classifierSpec = Utils.splitOptions(classifierString);    if (classifierSpec.length == 0) {      throw new Exception("Invalid classifier specification string");    }    String classifierName = classifierSpec[0];    classifierSpec[0] = "";    setClassifier(Classifier.forName(classifierName, classifierSpec));    // same for attribute evaluator     String evaluatorString = Utils.getOption('E', options);    if (evaluatorString.length() == 0) {      throw new Exception("An attribute evaluator must be specified"			  + " with the -E option.");    }    String [] evaluatorSpec = Utils.splitOptions(evaluatorString);    if (evaluatorSpec.length == 0) {      throw new Exception("Invalid attribute evaluator specification string");    }    String evaluatorName = evaluatorSpec[0];    evaluatorSpec[0] = "";    setEvaluator(ASEvaluation.forName(evaluatorName, evaluatorSpec));    // same for search method    String searchString = Utils.getOption('S', options);    if (searchString.length() == 0) {      throw new Exception("A search method must be specified"			  + " with the -S option.");    }    String [] searchSpec = Utils.splitOptions(searchString);    if (searchSpec.length == 0) {      throw new Exception("Invalid search specification string");    }    String searchName = searchSpec[0];    searchSpec[0] = "";    setSearch(ASSearch.forName(searchName, searchSpec));  }  /**   * Gets the current settings of the Classifier.   *   * @return an array of strings suitable for passing to setOptions   */  public String [] getOptions() {    String [] options = new String [6];    int current = 0;    options[current++] = "-B";    options[current++] = "" + getClassifierSpec();    // same attribute evaluator    options[current++] = "-E";    options[current++] = "" +getEvaluatorSpec();        // same for search    options[current++] = "-S";    options[current++] = "" + getSearchSpec();    while (current < options.length) {      options[current++] = "";    }    return options;  }  /**   * Returns the tip text for this property   * @return tip text for this property suitable for   * displaying in the explorer/experimenter gui   */  public String classifierTipText() {    return "Set the classifier to use";  }  /**   * Sets the classifier   *   * @param classifier the classifier with all options set.   */  public void setClassifier(Classifier classifier) {    m_Classifier = classifier;  }  /**   * Gets the classifier used.   *   * @return the classifier   */  public Classifier getClassifier() {    return m_Classifier;  }  /**   * Gets the classifier specification string, which contains the class name of   * the classifier and any options to the classifier   *   * @return the classifier string.   */  protected String getClassifierSpec() {        Classifier c = getClassifier();    if (c instanceof OptionHandler) {      return c.getClass().getName() + " "	+ Utils.joinOptions(((OptionHandler)c).getOptions());    }    return c.getClass().getName();  }  /**   * Returns the tip text for this property   * @return tip text for this property suitable for   * displaying in the explorer/experimenter gui   */  public String evaluatorTipText() {    return "Set the attribute evaluator to use. This evaluator is used "

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -