📄 attributeselectedclassifier.java
字号:
/* * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. *//* * AttributeSelectedClassifier.java * Copyright (C) 2000 Mark Hall * */package weka.classifiers;import java.io.*;import java.util.*;import weka.core.*;import weka.attributeSelection.*;/** * Class for running an arbitrary classifier on data that has been reduced * through attribute selection. <p> * * Valid options from the command line are:<p> * * -B classifierstring <br> * Classifierstring should contain the full class name of a classifier * followed by options to the classifier. * (required).<p> * * -E evaluatorstring <br> * Evaluatorstring should contain the full class name of an attribute * evaluator followed by any options. * (required).<p> * * -S searchstring <br> * Searchstring should contain the full class name of a search method * followed by any options. * (required). <p> * * @author Mark Hall (mhall@cs.waikato.ac.nz) * @version $Revision: 1.7 $ */public class AttributeSelectedClassifier extends DistributionClassifier implements OptionHandler, AdditionalMeasureProducer { /** The classifier */ protected Classifier m_Classifier = new weka.classifiers.ZeroR(); /** The attribute selection object */ protected AttributeSelection m_AttributeSelection = null; /** The attribute evaluator to use */ protected ASEvaluation m_Evaluator = new weka.attributeSelection.CfsSubsetEval(); /** The search method to use */ protected ASSearch m_Search = new weka.attributeSelection.BestFirst(); /** The header of the dimensionally reduced data */ protected Instances m_ReducedHeader; /** The number of class vals in the training data (1 if class is numeric) */ protected int m_numClasses; /** The number of attributes selected by the attribute selection phase */ protected double m_numAttributesSelected; /** The time taken to select attributes in milliseconds */ protected double m_selectionTime; /** The time taken to select attributes AND build the classifier */ protected double m_totalTime; /** * Returns a string describing this search method * @return a description of the search method suitable for * displaying in the explorer/experimenter gui */ public String globalInfo() { return "Dimensionality of training and test data is reduced by " +"attribute selection before being passed on to a classifier."; } /** * Returns an enumeration describing the available options * * @return an enumeration of all the available options */ public Enumeration listOptions() { Vector newVector = new Vector(3); newVector.addElement(new Option( "\tFull class name of classifier to use, followed\n" + "\tby scheme options. (required)\n" + "\teg: \"weka.classifiers.NaiveBayes -D\"", "B", 1, "-B <classifier specification>")); newVector.addElement(new Option( "\tFull class name of attribute evaluator, followed\n" + "\tby its options. (required)\n" + "\teg: \"weka.attributeSelection.CfsSubsetEval -L\"", "E", 1, "-E <attribute evaluator specification>")); newVector.addElement(new Option( "\tFull class name of search method, followed\n" + "\tby its options. (required)\n" + "\teg: \"weka.attributeSelection.BestFirst -D 1\"", "S", 1, "-S <attribute evaluator specification>")); return newVector.elements(); } /** * Parses a given list of options. Valid options are:<p> * * -B classifierstring <br> * Classifierstring should contain the full class name of a classifier * followed by options to the classifier. * (required).<p> * * -E evaluatorstring <br> * Evaluatorstring should contain the full class name of an attribute * evaluator followed by any options. * (required).<p> * * -S searchstring <br> * Searchstring should contain the full class name of a search method * followed by any options. * (required). <p> * * @param options the list of options as an array of strings * @exception Exception if an option is not supported */ public void setOptions(String[] options) throws Exception { String classifierString = Utils.getOption('B', options); if (classifierString.length() == 0) { throw new Exception("A classifier must be specified" + " with the -B option."); } String [] classifierSpec = Utils.splitOptions(classifierString); if (classifierSpec.length == 0) { throw new Exception("Invalid classifier specification string"); } String classifierName = classifierSpec[0]; classifierSpec[0] = ""; setClassifier(Classifier.forName(classifierName, classifierSpec)); // same for attribute evaluator String evaluatorString = Utils.getOption('E', options); if (evaluatorString.length() == 0) { throw new Exception("An attribute evaluator must be specified" + " with the -E option."); } String [] evaluatorSpec = Utils.splitOptions(evaluatorString); if (evaluatorSpec.length == 0) { throw new Exception("Invalid attribute evaluator specification string"); } String evaluatorName = evaluatorSpec[0]; evaluatorSpec[0] = ""; setEvaluator(ASEvaluation.forName(evaluatorName, evaluatorSpec)); // same for search method String searchString = Utils.getOption('S', options); if (searchString.length() == 0) { throw new Exception("A search method must be specified" + " with the -S option."); } String [] searchSpec = Utils.splitOptions(searchString); if (searchSpec.length == 0) { throw new Exception("Invalid search specification string"); } String searchName = searchSpec[0]; searchSpec[0] = ""; setSearch(ASSearch.forName(searchName, searchSpec)); } /** * Gets the current settings of the Classifier. * * @return an array of strings suitable for passing to setOptions */ public String [] getOptions() { String [] options = new String [6]; int current = 0; options[current++] = "-B"; options[current++] = "" + getClassifierSpec(); // same attribute evaluator options[current++] = "-E"; options[current++] = "" +getEvaluatorSpec(); // same for search options[current++] = "-S"; options[current++] = "" + getSearchSpec(); while (current < options.length) { options[current++] = ""; } return options; } /** * Returns the tip text for this property * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String classifierTipText() { return "Set the classifier to use"; } /** * Sets the classifier * * @param classifier the classifier with all options set. */ public void setClassifier(Classifier classifier) { m_Classifier = classifier; } /** * Gets the classifier used. * * @return the classifier */ public Classifier getClassifier() { return m_Classifier; } /** * Gets the classifier specification string, which contains the class name of * the classifier and any options to the classifier * * @return the classifier string. */ protected String getClassifierSpec() { Classifier c = getClassifier(); if (c instanceof OptionHandler) { return c.getClass().getName() + " " + Utils.joinOptions(((OptionHandler)c).getOptions()); } return c.getClass().getName(); } /** * Returns the tip text for this property * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String evaluatorTipText() { return "Set the attribute evaluator to use. This evaluator is used "
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -