📄 adaboostm1.java
字号:
/* * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. *//* * AdaBoostM1.java * Copyright (C) 1999 Eibe Frank,Len Trigg * */package weka.classifiers;import java.io.*;import java.util.*;import weka.core.*;/** * Class for boosting a classifier using Freund & Schapire's Adaboost * M1 method. For more information, see<p> * * Yoav Freund and Robert E. Schapire * (1996). <i>Experiments with a new boosting algorithm</i>. Proc * International Conference on Machine Learning, pages 148-156, Morgan * Kaufmann, San Francisco.<p> * * Valid options are:<p> * * -D <br> * Turn on debugging output.<p> * * -W classname <br> * Specify the full class name of a classifier as the basis for * boosting (required).<p> * * -I num <br> * Set the number of boost iterations (default 10). <p> * * -P num <br> * Set the percentage of weight mass used to build classifiers * (default 100). <p> * * -Q <br> * Use resampling instead of reweighting.<p> * * -S seed <br> * Random number seed for resampling (default 1). <p> * * Options after -- are passed to the designated classifier.<p> * * @author Eibe Frank (eibe@cs.waikato.ac.nz) * @author Len Trigg (trigg@cs.waikato.ac.nz) * @version $Revision: 1.12 $ */public class AdaBoostM1 extends DistributionClassifier implements OptionHandler, WeightedInstancesHandler, Sourcable { /** Max num iterations tried to find classifier with non-zero error. */ private static int MAX_NUM_RESAMPLING_ITERATIONS = 10; /** The model base classifier to use */ protected Classifier m_Classifier = new weka.classifiers.ZeroR(); /** Array for storing the generated base classifiers. */ protected Classifier [] m_Classifiers; /** Array for storing the weights for the votes. */ protected double [] m_Betas; /** The maximum number of boost iterations */ protected int m_MaxIterations = 10; /** The number of successfully generated base classifiers. */ protected int m_NumIterations; /** Weight Threshold. The percentage of weight mass used in training */ protected int m_WeightThreshold = 100; /** Debugging mode, gives extra output if true */ protected boolean m_Debug; /** Use boosting with reweighting? */ protected boolean m_UseResampling; /** Seed for boosting with resampling. */ protected int m_Seed = 1; /** The number of classes */ protected int m_NumClasses; /** * Select only instances with weights that contribute to * the specified quantile of the weight distribution * * @param data the input instances * @param quantile the specified quantile eg 0.9 to select * 90% of the weight mass * @return the selected instances */ protected Instances selectWeightQuantile(Instances data, double quantile) { int numInstances = data.numInstances(); Instances trainData = new Instances(data, numInstances); double [] weights = new double [numInstances]; double sumOfWeights = 0; for(int i = 0; i < numInstances; i++) { weights[i] = data.instance(i).weight(); sumOfWeights += weights[i]; } double weightMassToSelect = sumOfWeights * quantile; int [] sortedIndices = Utils.sort(weights); // Select the instances sumOfWeights = 0; for(int i = numInstances - 1; i >= 0; i--) { Instance instance = (Instance)data.instance(sortedIndices[i]).copy(); trainData.add(instance); sumOfWeights += weights[sortedIndices[i]]; if ((sumOfWeights > weightMassToSelect) && (i > 0) && (weights[sortedIndices[i]] != weights[sortedIndices[i - 1]])) { break; } } if (m_Debug) { System.err.println("Selected " + trainData.numInstances() + " out of " + numInstances); } return trainData; } /** * Returns an enumeration describing the available options * * @return an enumeration of all the available options */ public Enumeration listOptions() { Vector newVector = new Vector(6); newVector.addElement(new Option( "\tTurn on debugging output.", "D", 0, "-D")); newVector.addElement(new Option( "\tMaximum number of boost iterations.\n" +"\t(default 10)", "I", 1, "-I <num>")); newVector.addElement(new Option( "\tPercentage of weight mass to base training on.\n" +"\t(default 100, reduce to around 90 speed up)", "P", 1, "-P <num>")); newVector.addElement(new Option( "\tFull name of classifier to boost.\n" +"\teg: weka.classifiers.NaiveBayes", "W", 1, "-W <class name>")); newVector.addElement(new Option( "\tUse resampling for boosting.", "Q", 0, "-Q")); newVector.addElement(new Option( "\tSeed for resampling. (Default 1)", "S", 1, "-S <num>")); if ((m_Classifier != null) && (m_Classifier instanceof OptionHandler)) { newVector.addElement(new Option( "", "", 0, "\nOptions specific to classifier " + m_Classifier.getClass().getName() + ":")); Enumeration enum = ((OptionHandler)m_Classifier).listOptions(); while (enum.hasMoreElements()) { newVector.addElement(enum.nextElement()); } } return newVector.elements(); } /** * Parses a given list of options. Valid options are:<p> * * -D <br> * Turn on debugging output.<p> * * -W classname <br> * Specify the full class name of a classifier as the basis for * boosting (required).<p> * * -I num <br> * Set the number of boost iterations (default 10). <p> * * -P num <br> * Set the percentage of weight mass used to build classifiers * (default 100). <p> * * -Q <br> * Use resampling instead of reweighting.<p> * * -S seed <br> * Random number seed for resampling (default 1).<p> * * Options after -- are passed to the designated classifier.<p> * * @param options the list of options as an array of strings * @exception Exception if an option is not supported */ public void setOptions(String[] options) throws Exception { setDebug(Utils.getFlag('D', options)); String boostIterations = Utils.getOption('I', options); if (boostIterations.length() != 0) { setMaxIterations(Integer.parseInt(boostIterations)); } else { setMaxIterations(10); } String thresholdString = Utils.getOption('P', options); if (thresholdString.length() != 0) { setWeightThreshold(Integer.parseInt(thresholdString)); } else { setWeightThreshold(100); } setUseResampling(Utils.getFlag('Q', options)); if (m_UseResampling && (thresholdString.length() != 0)) { throw new Exception("Weight pruning with resampling"+ "not allowed."); } String seedString = Utils.getOption('S', options); if (seedString.length() != 0) { setSeed(Integer.parseInt(seedString)); } else { setSeed(1); } String classifierName = Utils.getOption('W', options); if (classifierName.length() == 0) { throw new Exception("A classifier must be specified with" + " the -W option."); } setClassifier(Classifier.forName(classifierName, Utils.partitionOptions(options))); } /** * Gets the current settings of the Classifier. * * @return an array of strings suitable for passing to setOptions */ public String [] getOptions() { String [] classifierOptions = new String [0]; if ((m_Classifier != null) && (m_Classifier instanceof OptionHandler)) { classifierOptions = ((OptionHandler)m_Classifier).getOptions(); } String [] options = new String [classifierOptions.length + 10]; int current = 0; if (getDebug()) { options[current++] = "-D"; } if (getUseResampling()) { options[current++] = "-Q"; } else { options[current++] = "-P"; options[current++] = "" + getWeightThreshold(); } options[current++] = "-I"; options[current++] = "" + getMaxIterations(); options[current++] = "-S"; options[current++] = "" + getSeed(); if (getClassifier() != null) { options[current++] = "-W"; options[current++] = getClassifier().getClass().getName(); } options[current++] = "--"; System.arraycopy(classifierOptions, 0, options, current, classifierOptions.length); current += classifierOptions.length; while (current < options.length) { options[current++] = ""; } return options; } /** * Set the classifier for boosting. * * @param newClassifier the Classifier to use. */ public void setClassifier(Classifier newClassifier) { m_Classifier = newClassifier; } /** * Get the classifier used as the classifier * * @return the classifier used as the classifier */ public Classifier getClassifier() { return m_Classifier; } /** * Set the maximum number of boost iterations */ public void setMaxIterations(int maxIterations) { m_MaxIterations = maxIterations; } /** * Get the maximum number of boost iterations * * @return the maximum number of boost iterations */ public int getMaxIterations() { return m_MaxIterations; } /** * Set weight threshold * * @param thresholding the percentage of weight mass used for training */ public void setWeightThreshold(int threshold) { m_WeightThreshold = threshold; } /** * Get the degree of weight thresholding * * @return the percentage of weight mass used for training */ public int getWeightThreshold() { return m_WeightThreshold; } /** * Set seed for resampling. * * @param seed the seed for resampling */ public void setSeed(int seed) { m_Seed = seed; } /** * Get seed for resampling. * * @return the seed for resampling */ public int getSeed() { return m_Seed; } /**
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -