⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 tree.java

📁 zlib 算法在j2me 中的应用
💻 JAVA
📖 第 1 页 / 共 2 页
字号:
      if (bits > max_length){ bits = max_length; overflow++; }      //tree[n*2+1] = (short)bits;      tree.set(n*2+1, (short)bits);      // We overwrite tree[n*2+1] which is no longer needed      if (n > max_code) continue;  // not a leaf node      s.bl_count[bits]++;      xbits = 0;      if (n >= base) xbits = extra[n-base];      //f = tree[n*2];      f = tree.get(n*2);      s.opt_len += f * (bits + xbits);      if (stree!=null) s.static_len += f * (stree[n*2+1] + xbits);    }    if (overflow == 0) return;    // This happens for example on obj2 and pic of the Calgary corpus    // Find the first bit length which could increase:    do {      bits = max_length-1;      while(s.bl_count[bits]==0) bits--;      s.bl_count[bits]--;      // move one leaf down the tree      s.bl_count[bits+1]+=2;   // move one overflow item as its brother      s.bl_count[max_length]--;      // The brother of the overflow item also moves one step up,      // but this does not affect bl_count[max_length]      overflow -= 2;    }    while (overflow > 0);    for (bits = max_length; bits != 0; bits--) {      n = s.bl_count[bits];      while (n != 0) {	m = s.heap[--h];	if (m > max_code) continue;	//if (tree[m*2+1] != bits) {	if (tree.get(m*2+1) != bits) {	  	  //s.opt_len += ((long)bits - (long)tree[m*2+1])*(long)tree[m*2];	  s.opt_len += ((long)bits - (long)tree.get(m*2+1))*(long)tree.get(m*2);	  //tree[m*2+1] = (short)bits;	  tree.set(m*2+1, (short)bits);	}	n--;      }    }  }  // Construct one Huffman tree and assigns the code bit strings and lengths.  // Update the total bit length for the current block.  // IN assertion: the field freq is set for all tree elements.  // OUT assertions: the fields len and code are set to the optimal bit length  //     and corresponding code. The length opt_len is updated; static_len is  //     also updated if stree is not null. The field max_code is set.  void build_tree(Deflate s){    short_array tree=dyn_tree;    short[] stree=stat_desc.static_tree;    int elems=stat_desc.elems;    int n, m;          // iterate over heap elements    int max_code=-1;   // largest code with non zero frequency    int node;          // new node being created    // Construct the initial heap, with least frequent element in    // heap[1]. The sons of heap[n] are heap[2*n] and heap[2*n+1].    // heap[0] is not used.    s.heap_len = 0;    s.heap_max = HEAP_SIZE;    for(n=0; n<elems; n++) {      //if(tree[n*2] != 0) {      if(tree.get(n*2) != 0) {      	s.heap[++s.heap_len] = max_code = n;	//s.depth[n] = 0;	s.depth.set(n,(byte)0);	      }      else{	//tree[n*2+1] = 0;	tree.set(n*2+1, (short)0);      }    }    // The pkzip format requires that at least one distance code exists,    // and that at least one bit should be sent even if there is only one    // possible code. So to avoid special checks later on we force at least    // two codes of non zero frequency.    while (s.heap_len < 2) {      node = s.heap[++s.heap_len] = (max_code < 2 ? ++max_code : 0);      //tree[node*2] = 1;      tree.set(node*2,(short)1);      //s.depth[node] = 0;      s.depth.set(node,(byte)0);      s.opt_len--; if (stree!=null) s.static_len -= stree[node*2+1];      // node is 0 or 1 so it does not have extra bits    }    this.max_code = max_code;    // The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree,    // establish sub-heaps of increasing lengths:    for(n=s.heap_len/2;n>=1; n--)      s.pqdownheap(tree, n);    // Construct the Huffman tree by repeatedly combining the least two    // frequent nodes.    node=elems;                 // next internal node of the tree    do{      // n = node of least frequency      n=s.heap[1];      s.heap[1]=s.heap[s.heap_len--];      s.pqdownheap(tree, 1);      m=s.heap[1];                // m = node of next least frequency      s.heap[--s.heap_max] = n; // keep the nodes sorted by frequency      s.heap[--s.heap_max] = m;      // Create a new node father of n and m      //tree[node*2] = (short)(tree[n*2] + tree[m*2]);      tree.set(node*2, (short)(tree.get(n*2) + tree.get(m*2)) );            //s.depth[node] = (byte)(Math.max(s.depth[n],s.depth[m])+1);      s.depth.set(node,  (byte)(Math.max(s.depth.get(n),s.depth.get(m))+1)  );            //tree[n*2+1] = tree[m*2+1] = (short)node;      tree.set(n*2+1,(short)node); tree.set(m*2+1,(short)node);            // and insert the new node in the heap      s.heap[1] = node++;      s.pqdownheap(tree, 1);    }    while(s.heap_len>=2);    s.heap[--s.heap_max] = s.heap[1];    // At this point, the fields freq and dad are set. We can now    // generate the bit lengths.    gen_bitlen(s);    // The field len is now set, we can generate the bit codes    gen_codes(tree, max_code, s.bl_count);  }  // Generate the codes for a given tree and bit counts (which need not be  // optimal).  // IN assertion: the array bl_count contains the bit length statistics for  // the given tree and the field len is set for all tree elements.  // OUT assertion: the field code is set for all tree elements of non  //     zero code length.  static void gen_codes(short_array tree, // the tree to decorate			int max_code, // largest code with non zero frequency			short[] bl_count // number of codes at each bit length			){    short[] next_code=new short[MAX_BITS+1]; // next code value for each bit length    short code = 0;            // running code value    int bits;                  // bit index    int n;                     // code index    // The distribution counts are first used to generate the code values    // without bit reversal.    for (bits = 1; bits <= MAX_BITS; bits++) {      next_code[bits] = code = (short)((code + bl_count[bits-1]) << 1);    }    // Check that the bit counts in bl_count are consistent. The last code    // must be all ones.    //Assert (code + bl_count[MAX_BITS]-1 == (1<<MAX_BITS)-1,    //        "inconsistent bit counts");    //Tracev((stderr,"\ngen_codes: max_code %d ", max_code));    for (n = 0;  n <= max_code; n++) {      //int len = tree[n*2+1];      int len = tree.get(n*2+1);      if (len == 0) continue;      // Now reverse the bits      //tree[n*2] = (short)(bi_reverse(next_code[len]++, len));      tree.set(n*2,  (short)(bi_reverse(next_code[len]++, len))  );    }  }  // Reverse the first len bits of a code, using straightforward code (a faster  // method would use a table)  // IN assertion: 1 <= len <= 15  static int bi_reverse(int code, // the value to invert			int len   // its bit length			){    int res = 0;    do{      res|=code&1;      code>>>=1;      res<<=1;    }     while(--len>0);    return res>>>1;  }}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -