⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 hmmlogp.m

📁 语音工具箱
💻 M
字号:
function loglike = hmmlogp(y,A,B,pi1)%  hmmlogp --> Log-likelihood for given observation sequence and HMM.%%  <Synopsis>%    loglike = hmmlogp(y,A,B,pi1)%%  <Description>%    The function calculates the log-likelihood for a given%    observation sequence y, and Hidden Markov Model A, B, and  pi1.%    Here, A is the S-by-S state transition matrix, B is the K-by-S%    observation probability matrix, and pi1 is the initial state%    probability vector.%%  <See Also>%    hmmrecog --> HMM based word classifier.%  <References>%  [1] J.R Deller, J.G. Proakis and F.H.L. Hansen, "Discrete-Time%      Processing of Speech Signals", IEEE Press, chapter 12, (2000).%%  <Revision>%    Peter S.K. Hansen, IMM, Technical University of Denmark%%    Last revised: September 30, 2000%-----------------------------------------------------------------------T = length(y);               % Length of observation sequence.S = length(A);               % Number of hidden states.alpha = zeros(S,T);                  % Forward recursion.beta  = zeros(S,T);                  % Backward recursion.scale = zeros(T,1);                  % Scale factors.alpha(:,1) = pi1.*B(y(1),:)' + eps;  % Alpha for t=1.scale(1)   = sum(alpha(:,1));        % Scale factor for t=1.alpha(:,1) = alpha(:,1)/scale(1);    % Scaled alpha for t=1.for (t = 2:T)  alpha(:,t) = A*alpha(:,t-1).*B(y(t),:)';  scale(t)   = sum(alpha(:,t));      % Scale factor for t.  alpha(:,t) = alpha(:,t)/(scale(t) + eps); % Scaled alpha for t.endloglike = sum(log10(scale + eps));%-----------------------------------------------------------------------% End of function hmmlogp%-----------------------------------------------------------------------

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -