⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 hmmfeatures.m

📁 语音工具箱
💻 M
字号:
function y = hmmfeatures(s,N,deltaN,M,Q)%  hmmfeatures --> Feature extraction for HMM recognizer.%%  <Synopsis>%    y = hmmfeatures(s,N,deltaN,M,Q)%%  <Description>%    A frame based analysis of the speech signal, s, is performed to%    give observation vectors (columns of y), which can be used to train%    HMMs for speech recognition.%%    The speech signal is blocked into frames of N samples, and%    consecutive frames are spaced deltaN samples apart. Each frame is%    multiplied by an N-sample Hamming window, and Mth-order LP analysis%    is performed. The LPC coefficients are then converted to Q cepstral%    coefficients, which are weighted by a raised sine window. The result%    is the first half of an observation vector, the second half is the%    differenced cepstral coefficients used to add dynamic information.%    Thus, the returned argument y is an 2Q-by-T matrix, where T is the%    number of frames.%%  <See Also>%    hmmcodebook --> Codebook generation for HMM recognizer.%  <References>%  [1] J.R Deller, J.G. Proakis and F.H.L. Hansen, "Discrete-Time%      Processing of Speech Signals", IEEE Press, chapter 12, (2000).%%  <Revision>%    Peter S.K. Hansen, IMM, Technical University of Denmark%%    Last revised: September 30, 2000%-----------------------------------------------------------------------Ns = length(s);                         % Signal length.T  = 1 + fix((Ns-N)/deltaN);            % No. of frames.a       = zeros(Q,1);gamma   = zeros(Q,1);gamma_w = zeros(Q,T);win_gamma = 1 + (Q/2)*sin(pi/Q*(1:Q)'); % Cepstral window function.for (t = 1:T)                           % Loop frames.  % Block into frames.  idx = (deltaN*(t-1)+1):(deltaN*(t-1)+N);  % Window frame.  sw = s(idx).*hamming(N);  % Short-term autocorrelation.  [rs,eta] = xcorr(sw,M,'biased');  % LP analysis based on Levinson-Durbin recursion.  [a(1:M),xi,kappa] = durbin(rs(M+1:2*M+1),M);  % Cepstral coefficients.  gamma(1) = a(1);  for (i = 2:Q)    gamma(i) = a(i) + (1:i-1)*(gamma(1:i-1).*a(i-1:-1:1))/i;  end  % Weighted cepstral sequence for frame t.  gamma_w(:,t) = gamma.*win_gamma;end% Time differenced weighted cepstral sequence.delta_gamma_w = gradient(gamma_w);% Observation vectors.y = [gamma_w; delta_gamma_w];%-----------------------------------------------------------------------% End of function hmmfeatures%-----------------------------------------------------------------------

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -