📄 aescrypt.c
字号:
/* ------------------------------------------------------------------------- Copyright (c) 2001, Dr Brian Gladman <brg@gladman.uk.net>, Worcester, UK. All rights reserved. TERMS Redistribution and use in source and binary forms, with or without modification, are permitted subject to the following conditions: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. 3. The copyright holder's name must not be used to endorse or promote any products derived from this software without his specific prior written permission. This software is provided 'as is' with no express or implied warranties of correctness or fitness for purpose. ------------------------------------------------------------------------- Issue Date: 21/01/2002 This file contains the code for implementing encryption and decryption for AES (Rijndael) for block and key sizes of 16, 24 and 32 bytes. It can optionally be replaced by code written in assembler using NASM.*/#include "aesopt.h"#if defined(BLOCK_SIZE) && (BLOCK_SIZE & 7)#error An illegal block size has been specified.#endif #define unused 77 /* Sunset Strip */#define si(y,x,k,c) s(y,c) = word_in(x + 4 * c) ^ k[c]#define so(y,x,c) word_out(y + 4 * c, s(x,c))#if BLOCK_SIZE == 16#if defined(ARRAYS)#define locals(y,x) x[4],y[4]#else#define locals(y,x) x##0,x##1,x##2,x##3,y##0,y##1,y##2,y##3 /* the following defines prevent the compiler requiring the declaration of generated but unused variables in the fwd_var and inv_var macros */#define b04 unused#define b05 unused#define b06 unused#define b07 unused#define b14 unused#define b15 unused#define b16 unused#define b17 unused#endif#define l_copy(y, x) s(y,0) = s(x,0); s(y,1) = s(x,1); \ s(y,2) = s(x,2); s(y,3) = s(x,3);#define state_in(y,x,k) si(y,x,k,0); si(y,x,k,1); si(y,x,k,2); si(y,x,k,3)#define state_out(y,x) so(y,x,0); so(y,x,1); so(y,x,2); so(y,x,3)#define round(rm,y,x,k) rm(y,x,k,0); rm(y,x,k,1); rm(y,x,k,2); rm(y,x,k,3)#elif BLOCK_SIZE == 24#if defined(ARRAYS)#define locals(y,x) x[6],y[6]#else#define locals(y,x) x##0,x##1,x##2,x##3,x##4,x##5, \ y##0,y##1,y##2,y##3,y##4,y##5#define b06 unused#define b07 unused#define b16 unused#define b17 unused#endif#define l_copy(y, x) s(y,0) = s(x,0); s(y,1) = s(x,1); \ s(y,2) = s(x,2); s(y,3) = s(x,3); \ s(y,4) = s(x,4); s(y,5) = s(x,5);#define state_in(y,x,k) si(y,x,k,0); si(y,x,k,1); si(y,x,k,2); \ si(y,x,k,3); si(y,x,k,4); si(y,x,k,5)#define state_out(y,x) so(y,x,0); so(y,x,1); so(y,x,2); \ so(y,x,3); so(y,x,4); so(y,x,5)#define round(rm,y,x,k) rm(y,x,k,0); rm(y,x,k,1); rm(y,x,k,2); \ rm(y,x,k,3); rm(y,x,k,4); rm(y,x,k,5)#else#if defined(ARRAYS)#define locals(y,x) x[8],y[8]#else#define locals(y,x) x##0,x##1,x##2,x##3,x##4,x##5,x##6,x##7, \ y##0,y##1,y##2,y##3,y##4,y##5,y##6,y##7#endif#define l_copy(y, x) s(y,0) = s(x,0); s(y,1) = s(x,1); \ s(y,2) = s(x,2); s(y,3) = s(x,3); \ s(y,4) = s(x,4); s(y,5) = s(x,5); \ s(y,6) = s(x,6); s(y,7) = s(x,7);#if BLOCK_SIZE == 32#define state_in(y,x,k) si(y,x,k,0); si(y,x,k,1); si(y,x,k,2); si(y,x,k,3); \ si(y,x,k,4); si(y,x,k,5); si(y,x,k,6); si(y,x,k,7)#define state_out(y,x) so(y,x,0); so(y,x,1); so(y,x,2); so(y,x,3); \ so(y,x,4); so(y,x,5); so(y,x,6); so(y,x,7)#define round(rm,y,x,k) rm(y,x,k,0); rm(y,x,k,1); rm(y,x,k,2); rm(y,x,k,3); \ rm(y,x,k,4); rm(y,x,k,5); rm(y,x,k,6); rm(y,x,k,7)#else#define state_in(y,x,k) \switch(nc) \{ case 8: si(y,x,k,7); si(y,x,k,6); \ case 6: si(y,x,k,5); si(y,x,k,4); \ case 4: si(y,x,k,3); si(y,x,k,2); \ si(y,x,k,1); si(y,x,k,0); \}#define state_out(y,x) \switch(nc) \{ case 8: so(y,x,7); so(y,x,6); \ case 6: so(y,x,5); so(y,x,4); \ case 4: so(y,x,3); so(y,x,2); \ so(y,x,1); so(y,x,0); \}#if defined(FAST_VARIABLE)#define round(rm,y,x,k) \switch(nc) \{ case 8: rm(y,x,k,7); rm(y,x,k,6); \ rm(y,x,k,5); rm(y,x,k,4); \ rm(y,x,k,3); rm(y,x,k,2); \ rm(y,x,k,1); rm(y,x,k,0); \ break; \ case 6: rm(y,x,k,5); rm(y,x,k,4); \ rm(y,x,k,3); rm(y,x,k,2); \ rm(y,x,k,1); rm(y,x,k,0); \ break; \ case 4: rm(y,x,k,3); rm(y,x,k,2); \ rm(y,x,k,1); rm(y,x,k,0); \ break; \}#else#define round(rm,y,x,k) \switch(nc) \{ case 8: rm(y,x,k,7); rm(y,x,k,6); \ case 6: rm(y,x,k,5); rm(y,x,k,4); \ case 4: rm(y,x,k,3); rm(y,x,k,2); \ rm(y,x,k,1); rm(y,x,k,0); \}#endif#endif#endif#if defined(ENCRYPTION)/* I am grateful to Frank Yellin for the following construction (and that for decryption) which, given the column (c) of the output state variable, gives the input state variables which are needed for each row (r) of the state. For the fixed block size options, compilers should reduce these two expressions to fixed variable references. But for variable block size code conditional clauses will sometimes be returned. y = output word, x = input word, r = row, c = column for r = 0, 1, 2 and 3 = column accessed for row r.*/#define fwd_var(x,r,c) \ ( r==0 ? \ ( c==0 ? s(x,0) \ : c==1 ? s(x,1) \ : c==2 ? s(x,2) \ : c==3 ? s(x,3) \ : c==4 ? s(x,4) \ : c==5 ? s(x,5) \ : c==6 ? s(x,6) \ : s(x,7)) \ : r==1 ? \ ( c==0 ? s(x,1) \ : c==1 ? s(x,2) \ : c==2 ? s(x,3) \ : c==3 ? nc==4 ? s(x,0) : s(x,4) \ : c==4 ? s(x,5) \ : c==5 ? nc==8 ? s(x,6) : s(x,0) \ : c==6 ? s(x,7) \ : s(x,0)) \ : r==2 ? \ ( c==0 ? nc==8 ? s(x,3) : s(x,2) \ : c==1 ? nc==8 ? s(x,4) : s(x,3) \ : c==2 ? nc==4 ? s(x,0) : nc==8 ? s(x,5) : s(x,4) \ : c==3 ? nc==4 ? s(x,1) : nc==8 ? s(x,6) : s(x,5) \ : c==4 ? nc==8 ? s(x,7) : s(x,0) \ : c==5 ? nc==8 ? s(x,0) : s(x,1) \ : c==6 ? s(x,1) \ : s(x,2)) \ : \ ( c==0 ? nc==8 ? s(x,4) : s(x,3) \ : c==1 ? nc==4 ? s(x,0) : nc==8 ? s(x,5) : s(x,4) \ : c==2 ? nc==4 ? s(x,1) : nc==8 ? s(x,6) : s(x,5) \ : c==3 ? nc==4 ? s(x,2) : nc==8 ? s(x,7) : s(x,0) \ : c==4 ? nc==8 ? s(x,0) : s(x,1) \ : c==5 ? nc==8 ? s(x,1) : s(x,2) \ : c==6 ? s(x,2) \ : s(x,3)))#if defined(FT4_SET)#undef dec_fmvars#define dec_fmvars#define fwd_rnd(y,x,k,c) s(y,c)= (k)[c] ^ four_tables(x,ft_tab,fwd_var,rf1,c)#elif defined(FT1_SET)#undef dec_fmvars#define dec_fmvars#define fwd_rnd(y,x,k,c) s(y,c)= (k)[c] ^ one_table(x,upr,ft_tab,fwd_var,rf1,c)#else#define fwd_rnd(y,x,k,c) s(y,c) = fwd_mcol(no_table(x,s_box,fwd_var,rf1,c)) ^ (k)[c]#endif#if defined(FL4_SET)#define fwd_lrnd(y,x,k,c) s(y,c)= (k)[c] ^ four_tables(x,fl_tab,fwd_var,rf1,c)#elif defined(FL1_SET)#define fwd_lrnd(y,x,k,c) s(y,c)= (k)[c] ^ one_table(x,ups,fl_tab,fwd_var,rf1,c)#else#define fwd_lrnd(y,x,k,c) s(y,c) = no_table(x,s_box,fwd_var,rf1,c) ^ (k)[c]#endifaes_rval aes_enc_blk(const unsigned char in_blk[], unsigned char out_blk[], const aes_ctx cx[1]){ uint32_t locals(b0, b1); const uint32_t *kp = cx->k_sch; dec_fmvars /* declare variables for fwd_mcol() if needed */ if(!(cx->n_blk & 1)) return aes_bad; state_in(b0, in_blk, kp); #if (ENC_UNROLL == FULL) kp += (cx->n_rnd - 9) * nc; switch(cx->n_rnd) { case 14: round(fwd_rnd, b1, b0, kp - 4 * nc); round(fwd_rnd, b0, b1, kp - 3 * nc); case 12: round(fwd_rnd, b1, b0, kp - 2 * nc); round(fwd_rnd, b0, b1, kp - nc); case 10: round(fwd_rnd, b1, b0, kp ); round(fwd_rnd, b0, b1, kp + nc); round(fwd_rnd, b1, b0, kp + 2 * nc); round(fwd_rnd, b0, b1, kp + 3 * nc); round(fwd_rnd, b1, b0, kp + 4 * nc); round(fwd_rnd, b0, b1, kp + 5 * nc); round(fwd_rnd, b1, b0, kp + 6 * nc); round(fwd_rnd, b0, b1, kp + 7 * nc); round(fwd_rnd, b1, b0, kp + 8 * nc); round(fwd_lrnd, b0, b1, kp + 9 * nc); }#else #if (ENC_UNROLL == PARTIAL) { uint32_t rnd; for(rnd = 0; rnd < (cx->n_rnd >> 1) - 1; ++rnd) { kp += nc; round(fwd_rnd, b1, b0, kp); kp += nc; round(fwd_rnd, b0, b1, kp); } kp += nc; round(fwd_rnd, b1, b0, kp);#else { uint32_t rnd, *p0 = b0, *p1 = b1, *pt; for(rnd = 0; rnd < cx->n_rnd - 1; ++rnd) { kp += nc; round(fwd_rnd, p1, p0, kp); pt = p0, p0 = p1, p1 = pt; }#endif kp += nc; round(fwd_lrnd, b0, b1, kp); }#endif state_out(out_blk, b0); return aes_good;}#endif#if defined(DECRYPTION)#define inv_var(x,r,c) \ ( r==0 ? \ ( c==0 ? s(x,0) \ : c==1 ? s(x,1) \ : c==2 ? s(x,2) \ : c==3 ? s(x,3) \ : c==4 ? s(x,4) \ : c==5 ? s(x,5) \ : c==6 ? s(x,6) \ : s(x,7)) \ : r==1 ? \ ( c==0 ? nc==4 ? s(x,3) : nc==8 ? s(x,7) : s(x,5) \ : c==1 ? s(x,0) \ : c==2 ? s(x,1) \ : c==3 ? s(x,2) \ : c==4 ? s(x,3) \ : c==5 ? s(x,4) \ : c==6 ? s(x,5) \ : s(x,6)) \ : r==2 ? \ ( c==0 ? nc==4 ? s(x,2) : nc==8 ? s(x,5) : s(x,4) \ : c==1 ? nc==4 ? s(x,3) : nc==8 ? s(x,6) : s(x,5) \ : c==2 ? nc==8 ? s(x,7) : s(x,0) \ : c==3 ? nc==8 ? s(x,0) : s(x,1) \ : c==4 ? nc==8 ? s(x,1) : s(x,2) \ : c==5 ? nc==8 ? s(x,2) : s(x,3) \ : c==6 ? s(x,3) \ : s(x,4)) \ : \ ( c==0 ? nc==4 ? s(x,1) : nc==8 ? s(x,4) : s(x,3) \ : c==1 ? nc==4 ? s(x,2) : nc==8 ? s(x,5) : s(x,4) \ : c==2 ? nc==4 ? s(x,3) : nc==8 ? s(x,6) : s(x,5) \ : c==3 ? nc==8 ? s(x,7) : s(x,0) \ : c==4 ? nc==8 ? s(x,0) : s(x,1) \ : c==5 ? nc==8 ? s(x,1) : s(x,2) \ : c==6 ? s(x,2) \ : s(x,3)))#if defined(IT4_SET)#undef dec_imvars#define dec_imvars#define inv_rnd(y,x,k,c) s(y,c)= (k)[c] ^ four_tables(x,it_tab,inv_var,rf1,c)#elif defined(IT1_SET)#undef dec_imvars#define dec_imvars#define inv_rnd(y,x,k,c) s(y,c)= (k)[c] ^ one_table(x,upr,it_tab,inv_var,rf1,c)#else#define inv_rnd(y,x,k,c) s(y,c) = inv_mcol(no_table(x,inv_s_box,inv_var,rf1,c) ^ (k)[c])#endif#if defined(IL4_SET)#define inv_lrnd(y,x,k,c) s(y,c)= (k)[c] ^ four_tables(x,il_tab,inv_var,rf1,c)#elif defined(IL1_SET)#define inv_lrnd(y,x,k,c) s(y,c)= (k)[c] ^ one_table(x,ups,il_tab,inv_var,rf1,c)#else#define inv_lrnd(y,x,k,c) s(y,c) = no_table(x,inv_s_box,inv_var,rf1,c) ^ (k)[c]#endifaes_rval aes_dec_blk(const unsigned char in_blk[], unsigned char out_blk[], const aes_ctx cx[1]){ uint32_t locals(b0, b1); const uint32_t *kp = cx->k_sch + nc * cx->n_rnd; dec_imvars /* declare variables for inv_mcol() if needed */ if(!(cx->n_blk & 2)) return aes_bad; state_in(b0, in_blk, kp);#if (DEC_UNROLL == FULL) kp = cx->k_sch + 9 * nc; switch(cx->n_rnd) { case 14: round(inv_rnd, b1, b0, kp + 4 * nc); round(inv_rnd, b0, b1, kp + 3 * nc); case 12: round(inv_rnd, b1, b0, kp + 2 * nc); round(inv_rnd, b0, b1, kp + nc ); case 10: round(inv_rnd, b1, b0, kp ); round(inv_rnd, b0, b1, kp - nc); round(inv_rnd, b1, b0, kp - 2 * nc); round(inv_rnd, b0, b1, kp - 3 * nc); round(inv_rnd, b1, b0, kp - 4 * nc); round(inv_rnd, b0, b1, kp - 5 * nc); round(inv_rnd, b1, b0, kp - 6 * nc); round(inv_rnd, b0, b1, kp - 7 * nc); round(inv_rnd, b1, b0, kp - 8 * nc); round(inv_lrnd, b0, b1, kp - 9 * nc); }#else #if (DEC_UNROLL == PARTIAL) { uint32_t rnd; for(rnd = 0; rnd < (cx->n_rnd >> 1) - 1; ++rnd) { kp -= nc; round(inv_rnd, b1, b0, kp); kp -= nc; round(inv_rnd, b0, b1, kp); } kp -= nc; round(inv_rnd, b1, b0, kp);#else { uint32_t rnd, *p0 = b0, *p1 = b1, *pt; for(rnd = 0; rnd < cx->n_rnd - 1; ++rnd) { kp -= nc; round(inv_rnd, p1, p0, kp); pt = p0, p0 = p1, p1 = pt; }#endif kp -= nc; round(inv_lrnd, b0, b1, kp); }#endif state_out(out_blk, b0); return aes_good;}#endif
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -