📄 aeskey.c
字号:
/* ------------------------------------------------------------------------- Copyright (c) 2001, Dr Brian Gladman <brg@gladman.uk.net>, Worcester, UK. All rights reserved. TERMS Redistribution and use in source and binary forms, with or without modification, are permitted subject to the following conditions: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. 3. The copyright holder's name must not be used to endorse or promote any products derived from this software without his specific prior written permission. This software is provided 'as is' with no express or implied warranties of correctness or fitness for purpose. ------------------------------------------------------------------------- Issue Date: 21/01/2002 This file contains the code for implementing the key schedule for AES (Rijndael) for block and key sizes of 16, 24, and 32 bytes.*/#include "aesopt.h"#if defined(BLOCK_SIZE) && (BLOCK_SIZE & 7)#error An illegal block size has been specified.#endif /* Subroutine to set the block size (if variable) in bytes, legal values being 16, 24 and 32. */#if !defined(BLOCK_SIZE) && defined(SET_BLOCK_LENGTH)aes_rval aes_blk_len(unsigned int blen, aes_ctx cx[1]){#if !defined(FIXED_TABLES) if(!tab_init) gen_tabs();#endif if((blen & 7) || blen < 16 || blen > 32) { cx->n_blk = 0; return aes_bad; } cx->n_blk = blen; return aes_good;}#endif/* Initialise the key schedule from the user supplied key. The key length is now specified in bytes - 16, 24 or 32 as appropriate. This corresponds to bit lengths of 128, 192 and 256 bits, and to Nk values of 4, 6 and 8 respectively. The following macros implement a single cycle in the key schedule generation process. The number of cycles needed for each cx->n_col and nk value is: nk = 4 5 6 7 8 ------------------------------ cx->n_col = 4 10 9 8 7 7 cx->n_col = 5 14 11 10 9 9 cx->n_col = 6 19 15 12 11 11 cx->n_col = 7 21 19 16 13 14 cx->n_col = 8 29 23 19 17 14*/#if defined(ENCRYPTION_KEY_SCHEDULE)#define ke4(k,i) \{ k[4*(i)+4] = ss[0] ^= ls_box(ss[3],3) ^ rcon_tab[i]; k[4*(i)+5] = ss[1] ^= ss[0]; \ k[4*(i)+6] = ss[2] ^= ss[1]; k[4*(i)+7] = ss[3] ^= ss[2]; \}#define kel4(k,i) \{ k[4*(i)+4] = ss[0] ^= ls_box(ss[3],3) ^ rcon_tab[i]; k[4*(i)+5] = ss[1] ^= ss[0]; \ k[4*(i)+6] = ss[2] ^= ss[1]; k[4*(i)+7] = ss[3] ^= ss[2]; \}#define ke6(k,i) \{ k[6*(i)+ 6] = ss[0] ^= ls_box(ss[5],3) ^ rcon_tab[i]; k[6*(i)+ 7] = ss[1] ^= ss[0]; \ k[6*(i)+ 8] = ss[2] ^= ss[1]; k[6*(i)+ 9] = ss[3] ^= ss[2]; \ k[6*(i)+10] = ss[4] ^= ss[3]; k[6*(i)+11] = ss[5] ^= ss[4]; \}#define kel6(k,i) \{ k[6*(i)+ 6] = ss[0] ^= ls_box(ss[5],3) ^ rcon_tab[i]; k[6*(i)+ 7] = ss[1] ^= ss[0]; \ k[6*(i)+ 8] = ss[2] ^= ss[1]; k[6*(i)+ 9] = ss[3] ^= ss[2]; \}#define ke8(k,i) \{ k[8*(i)+ 8] = ss[0] ^= ls_box(ss[7],3) ^ rcon_tab[i]; k[8*(i)+ 9] = ss[1] ^= ss[0]; \ k[8*(i)+10] = ss[2] ^= ss[1]; k[8*(i)+11] = ss[3] ^= ss[2]; \ k[8*(i)+12] = ss[4] ^= ls_box(ss[3],0); k[8*(i)+13] = ss[5] ^= ss[4]; \ k[8*(i)+14] = ss[6] ^= ss[5]; k[8*(i)+15] = ss[7] ^= ss[6]; \}#define kel8(k,i) \{ k[8*(i)+ 8] = ss[0] ^= ls_box(ss[7],3) ^ rcon_tab[i]; k[8*(i)+ 9] = ss[1] ^= ss[0]; \ k[8*(i)+10] = ss[2] ^= ss[1]; k[8*(i)+11] = ss[3] ^= ss[2]; \}aes_rval aes_enc_key(const unsigned char in_key[], unsigned int klen, aes_ctx cx[1]){ uint32_t ss[8]; #if !defined(FIXED_TABLES) if(!tab_init) gen_tabs();#endif#if !defined(BLOCK_SIZE) if(!cx->n_blk) cx->n_blk = 16;#else cx->n_blk = BLOCK_SIZE;#endif cx->n_blk = (cx->n_blk & ~3) | 1; cx->k_sch[0] = ss[0] = word_in(in_key ); cx->k_sch[1] = ss[1] = word_in(in_key + 4); cx->k_sch[2] = ss[2] = word_in(in_key + 8); cx->k_sch[3] = ss[3] = word_in(in_key + 12);#if (BLOCK_SIZE == 16) && (ENC_UNROLL != NONE) switch(klen) { case 16: ke4(cx->k_sch, 0); ke4(cx->k_sch, 1); ke4(cx->k_sch, 2); ke4(cx->k_sch, 3); ke4(cx->k_sch, 4); ke4(cx->k_sch, 5); ke4(cx->k_sch, 6); ke4(cx->k_sch, 7); ke4(cx->k_sch, 8); kel4(cx->k_sch, 9); cx->n_rnd = 10; break; case 24: cx->k_sch[4] = ss[4] = word_in(in_key + 16); cx->k_sch[5] = ss[5] = word_in(in_key + 20); ke6(cx->k_sch, 0); ke6(cx->k_sch, 1); ke6(cx->k_sch, 2); ke6(cx->k_sch, 3); ke6(cx->k_sch, 4); ke6(cx->k_sch, 5); ke6(cx->k_sch, 6); kel6(cx->k_sch, 7); cx->n_rnd = 12; break; case 32: cx->k_sch[4] = ss[4] = word_in(in_key + 16); cx->k_sch[5] = ss[5] = word_in(in_key + 20); cx->k_sch[6] = ss[6] = word_in(in_key + 24); cx->k_sch[7] = ss[7] = word_in(in_key + 28); ke8(cx->k_sch, 0); ke8(cx->k_sch, 1); ke8(cx->k_sch, 2); ke8(cx->k_sch, 3); ke8(cx->k_sch, 4); ke8(cx->k_sch, 5); kel8(cx->k_sch, 6); cx->n_rnd = 14; break; default: cx->n_rnd = 0; return aes_bad; }#else { uint32_t i, l; cx->n_rnd = ((klen >> 2) > nc ? (klen >> 2) : nc) + 6; l = (nc * cx->n_rnd + nc - 1) / (klen >> 2); switch(klen) { case 16: for(i = 0; i < l; ++i) ke4(cx->k_sch, i); break; case 24: cx->k_sch[4] = ss[4] = word_in(in_key + 16); cx->k_sch[5] = ss[5] = word_in(in_key + 20); for(i = 0; i < l; ++i) ke6(cx->k_sch, i); break; case 32: cx->k_sch[4] = ss[4] = word_in(in_key + 16); cx->k_sch[5] = ss[5] = word_in(in_key + 20); cx->k_sch[6] = ss[6] = word_in(in_key + 24); cx->k_sch[7] = ss[7] = word_in(in_key + 28); for(i = 0; i < l; ++i) ke8(cx->k_sch, i); break; default: cx->n_rnd = 0; return aes_bad; } }#endif return aes_good;}#endif#if defined(DECRYPTION_KEY_SCHEDULE)#if (DEC_ROUND != NO_TABLES)#define d_vars dec_imvars#define ff(x) inv_mcol(x)#else#define ff(x) (x)#define d_vars#endif#if 1#define kdf4(k,i) \{ ss[0] = ss[0] ^ ss[2] ^ ss[1] ^ ss[3]; ss[1] = ss[1] ^ ss[3]; ss[2] = ss[2] ^ ss[3]; ss[3] = ss[3]; \ ss[4] = ls_box(ss[(i+3) % 4], 3) ^ rcon_tab[i]; ss[i % 4] ^= ss[4]; \ ss[4] ^= k[4*(i)]; k[4*(i)+4] = ff(ss[4]); ss[4] ^= k[4*(i)+1]; k[4*(i)+5] = ff(ss[4]); \ ss[4] ^= k[4*(i)+2]; k[4*(i)+6] = ff(ss[4]); ss[4] ^= k[4*(i)+3]; k[4*(i)+7] = ff(ss[4]); \}#define kd4(k,i) \{ ss[4] = ls_box(ss[(i+3) % 4], 3) ^ rcon_tab[i]; ss[i % 4] ^= ss[4]; ss[4] = ff(ss[4]); \ k[4*(i)+4] = ss[4] ^= k[4*(i)]; k[4*(i)+5] = ss[4] ^= k[4*(i)+1]; \ k[4*(i)+6] = ss[4] ^= k[4*(i)+2]; k[4*(i)+7] = ss[4] ^= k[4*(i)+3]; \}#define kdl4(k,i) \{ ss[4] = ls_box(ss[(i+3) % 4], 3) ^ rcon_tab[i]; ss[i % 4] ^= ss[4]; \ k[4*(i)+4] = (ss[0] ^= ss[1]) ^ ss[2] ^ ss[3]; k[4*(i)+5] = ss[1] ^ ss[3]; \ k[4*(i)+6] = ss[0]; k[4*(i)+7] = ss[1]; \}#else#define kdf4(k,i) \{ ss[0] ^= ls_box(ss[3],3) ^ rcon_tab[i]; k[4*(i)+ 4] = ff(ss[0]); ss[1] ^= ss[0]; k[4*(i)+ 5] = ff(ss[1]); \ ss[2] ^= ss[1]; k[4*(i)+ 6] = ff(ss[2]); ss[3] ^= ss[2]; k[4*(i)+ 7] = ff(ss[3]); \}#define kd4(k,i) \{ ss[4] = ls_box(ss[3],3) ^ rcon_tab[i]; \ ss[0] ^= ss[4]; ss[4] = ff(ss[4]); k[4*(i)+ 4] = ss[4] ^= k[4*(i)]; \ ss[1] ^= ss[0]; k[4*(i)+ 5] = ss[4] ^= k[4*(i)+ 1]; \ ss[2] ^= ss[1]; k[4*(i)+ 6] = ss[4] ^= k[4*(i)+ 2]; \ ss[3] ^= ss[2]; k[4*(i)+ 7] = ss[4] ^= k[4*(i)+ 3]; \}#define kdl4(k,i) \{ ss[0] ^= ls_box(ss[3],3) ^ rcon_tab[i]; k[4*(i)+ 4] = ss[0]; ss[1] ^= ss[0]; k[4*(i)+ 5] = ss[1]; \ ss[2] ^= ss[1]; k[4*(i)+ 6] = ss[2]; ss[3] ^= ss[2]; k[4*(i)+ 7] = ss[3]; \}#endif#define kdf6(k,i) \{ ss[0] ^= ls_box(ss[5],3) ^ rcon_tab[i]; k[6*(i)+ 6] = ff(ss[0]); ss[1] ^= ss[0]; k[6*(i)+ 7] = ff(ss[1]); \ ss[2] ^= ss[1]; k[6*(i)+ 8] = ff(ss[2]); ss[3] ^= ss[2]; k[6*(i)+ 9] = ff(ss[3]); \ ss[4] ^= ss[3]; k[6*(i)+10] = ff(ss[4]); ss[5] ^= ss[4]; k[6*(i)+11] = ff(ss[5]); \}#define kd6(k,i) \{ ss[6] = ls_box(ss[5],3) ^ rcon_tab[i]; \ ss[0] ^= ss[6]; ss[6] = ff(ss[6]); k[6*(i)+ 6] = ss[6] ^= k[6*(i)]; \ ss[1] ^= ss[0]; k[6*(i)+ 7] = ss[6] ^= k[6*(i)+ 1]; \ ss[2] ^= ss[1]; k[6*(i)+ 8] = ss[6] ^= k[6*(i)+ 2]; \ ss[3] ^= ss[2]; k[6*(i)+ 9] = ss[6] ^= k[6*(i)+ 3]; \ ss[4] ^= ss[3]; k[6*(i)+10] = ss[6] ^= k[6*(i)+ 4]; \ ss[5] ^= ss[4]; k[6*(i)+11] = ss[6] ^= k[6*(i)+ 5]; \}#define kdl6(k,i) \{ ss[0] ^= ls_box(ss[5],3) ^ rcon_tab[i]; k[6*(i)+ 6] = ss[0]; ss[1] ^= ss[0]; k[6*(i)+ 7] = ss[1]; \ ss[2] ^= ss[1]; k[6*(i)+ 8] = ss[2]; ss[3] ^= ss[2]; k[6*(i)+ 9] = ss[3]; \}#define kdf8(k,i) \{ ss[0] ^= ls_box(ss[7],3) ^ rcon_tab[i]; k[8*(i)+ 8] = ff(ss[0]); ss[1] ^= ss[0]; k[8*(i)+ 9] = ff(ss[1]); \ ss[2] ^= ss[1]; k[8*(i)+10] = ff(ss[2]); ss[3] ^= ss[2]; k[8*(i)+11] = ff(ss[3]); \ ss[4] ^= ls_box(ss[3],0); k[8*(i)+12] = ff(ss[4]); ss[5] ^= ss[4]; k[8*(i)+13] = ff(ss[5]); \ ss[6] ^= ss[5]; k[8*(i)+14] = ff(ss[6]); ss[7] ^= ss[6]; k[8*(i)+15] = ff(ss[7]); \}#define kd8(k,i) \{ uint32_t g = ls_box(ss[7],3) ^ rcon_tab[i]; \ ss[0] ^= g; g = ff(g); k[8*(i)+ 8] = g ^= k[8*(i)]; \ ss[1] ^= ss[0]; k[8*(i)+ 9] = g ^= k[8*(i)+ 1]; \ ss[2] ^= ss[1]; k[8*(i)+10] = g ^= k[8*(i)+ 2]; \ ss[3] ^= ss[2]; k[8*(i)+11] = g ^= k[8*(i)+ 3]; \ g = ls_box(ss[3],0); \ ss[4] ^= g; g = ff(g); k[8*(i)+12] = g ^= k[8*(i)+ 4]; \ ss[5] ^= ss[4]; k[8*(i)+13] = g ^= k[8*(i)+ 5]; \ ss[6] ^= ss[5]; k[8*(i)+14] = g ^= k[8*(i)+ 6]; \ ss[7] ^= ss[6]; k[8*(i)+15] = g ^= k[8*(i)+ 7]; \}#define kdl8(k,i) \{ ss[0] ^= ls_box(ss[7],3) ^ rcon_tab[i]; k[8*(i)+ 8] = ss[0]; ss[1] ^= ss[0]; k[8*(i)+ 9] = ss[1]; \ ss[2] ^= ss[1]; k[8*(i)+10] = ss[2]; ss[3] ^= ss[2]; k[8*(i)+11] = ss[3]; \}/* Subroutine to set the block size (if variable) in bytes, legal values being 16, 24 and 32.*/aes_rval aes_dec_key(const unsigned char in_key[], unsigned int klen, aes_ctx cx[1]){ uint32_t ss[8]; d_vars#if !defined(FIXED_TABLES) if(!tab_init) gen_tabs();#endif#if !defined(BLOCK_SIZE) if(!cx->n_blk) cx->n_blk = 16;#else cx->n_blk = BLOCK_SIZE;#endif cx->n_blk = (cx->n_blk & ~3) | 2; cx->k_sch[0] = ss[0] = word_in(in_key ); cx->k_sch[1] = ss[1] = word_in(in_key + 4); cx->k_sch[2] = ss[2] = word_in(in_key + 8); cx->k_sch[3] = ss[3] = word_in(in_key + 12);#if (BLOCK_SIZE == 16) && (DEC_UNROLL != NONE) switch(klen) { case 16: kdf4(cx->k_sch, 0); kd4(cx->k_sch, 1); kd4(cx->k_sch, 2); kd4(cx->k_sch, 3); kd4(cx->k_sch, 4); kd4(cx->k_sch, 5); kd4(cx->k_sch, 6); kd4(cx->k_sch, 7); kd4(cx->k_sch, 8); kdl4(cx->k_sch, 9); cx->n_rnd = 10; break; case 24: cx->k_sch[4] = ff(ss[4] = word_in(in_key + 16)); cx->k_sch[5] = ff(ss[5] = word_in(in_key + 20)); kdf6(cx->k_sch, 0); kd6(cx->k_sch, 1); kd6(cx->k_sch, 2); kd6(cx->k_sch, 3); kd6(cx->k_sch, 4); kd6(cx->k_sch, 5); kd6(cx->k_sch, 6); kdl6(cx->k_sch, 7); cx->n_rnd = 12; break; case 32: cx->k_sch[4] = ff(ss[4] = word_in(in_key + 16)); cx->k_sch[5] = ff(ss[5] = word_in(in_key + 20)); cx->k_sch[6] = ff(ss[6] = word_in(in_key + 24)); cx->k_sch[7] = ff(ss[7] = word_in(in_key + 28)); kdf8(cx->k_sch, 0); kd8(cx->k_sch, 1); kd8(cx->k_sch, 2); kd8(cx->k_sch, 3); kd8(cx->k_sch, 4); kd8(cx->k_sch, 5); kdl8(cx->k_sch, 6); cx->n_rnd = 14; break; default: cx->n_rnd = 0; return aes_bad; }#else { uint32_t i, l; cx->n_rnd = ((klen >> 2) > nc ? (klen >> 2) : nc) + 6; l = (nc * cx->n_rnd + nc - 1) / (klen >> 2); switch(klen) { case 16: for(i = 0; i < l; ++i) ke4(cx->k_sch, i); break; case 24: cx->k_sch[4] = ss[4] = word_in(in_key + 16); cx->k_sch[5] = ss[5] = word_in(in_key + 20); for(i = 0; i < l; ++i) ke6(cx->k_sch, i); break; case 32: cx->k_sch[4] = ss[4] = word_in(in_key + 16); cx->k_sch[5] = ss[5] = word_in(in_key + 20); cx->k_sch[6] = ss[6] = word_in(in_key + 24); cx->k_sch[7] = ss[7] = word_in(in_key + 28); for(i = 0; i < l; ++i) ke8(cx->k_sch, i); break; default: cx->n_rnd = 0; return aes_bad; }#if (DEC_ROUND != NO_TABLES) for(i = nc; i < nc * cx->n_rnd; ++i) cx->k_sch[i] = inv_mcol(cx->k_sch[i]);#endif }#endif return aes_good;}#endif
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -