⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 rsa.c

📁 加密算法源代码DES&RSA
💻 C
📖 第 1 页 / 共 2 页
字号:
		*(pkcsBlock+i) = 0xff;
	
	// separator 
	pkcsBlock[i++] = 0;

	R_memcpy((POINTER)&pkcsBlock[i], (POINTER)input, inputLen);

	status = rsapublicfunc(output, outputLen, pkcsBlock, modulusLen, publicKey);

	/* Clear sensitive information. */

	byte = 0;
	R_memset((POINTER)pkcsBlock, 0, sizeof(pkcsBlock));

	return(status);
}

/* RSA decryption, according to RSADSI's PKCS #1. */

int RSAPublicDecrypt(output, outputLen, input, inputLen, publicKey)
unsigned char *output;          /* output block */
unsigned int *outputLen;        /* length of output block */
unsigned char *input;           /* input block */
unsigned int inputLen;          /* length of input block */
R_RSA_PUBLIC_KEY *publicKey;    /* RSA public key */
{
	int status;
	unsigned char pkcsBlock[MAX_RSA_MODULUS_LEN];
	unsigned int i, modulusLen, pkcsBlockLen;

	modulusLen = (publicKey->bits + 7) / 8;

	if(inputLen > modulusLen)
		return(RE_LEN);

	status = rsapublicfunc(pkcsBlock, &pkcsBlockLen, input, inputLen, publicKey);
	if(status)
		return(status);

	if(pkcsBlockLen != modulusLen)
		return(RE_LEN);

	/* Require block type 1. */

	if((pkcsBlock[0] != 0) || (pkcsBlock[1] != 1))
	 return(RE_DATA);

	for(i = 2; i < modulusLen-1; i++)
		if(*(pkcsBlock+i) != 0xff)
			break;

	/* separator check */

	if(pkcsBlock[i++] != 0)
		return(RE_DATA);

	*outputLen = modulusLen - i;

	if(*outputLen + 11 > modulusLen)
		return(RE_DATA);

	R_memcpy((POINTER)output, (POINTER)&pkcsBlock[i], *outputLen);

	/* Clear sensitive information. */

	R_memset((POINTER)pkcsBlock, 0, sizeof(pkcsBlock));

	return(ID_OK);
}

/* RSA encryption, according to RSADSI's PKCS #1. */

int RSAPrivateEncrypt(output, outputLen, input, inputLen, privateKey)
unsigned char *output;          /* output block */
unsigned int *outputLen;        /* length of output block */
unsigned char *input;           /* input block */
unsigned int inputLen;          /* length of input block */
R_RSA_PRIVATE_KEY *privateKey;  /* RSA private key */
{
	int status;
	unsigned char pkcsBlock[MAX_RSA_MODULUS_LEN];
	unsigned int i, modulusLen;

	modulusLen = (privateKey->bits + 7) / 8;

	if(inputLen + 11 > modulusLen)
		return (RE_LEN);

	*pkcsBlock = 0;
	/* block type 1 */
	*(pkcsBlock+1) = 1;

	for (i = 2; i < modulusLen - inputLen - 1; i++)
		*(pkcsBlock+i) = 0xff;

	/* separator */
	pkcsBlock[i++] = 0;

	R_memcpy((POINTER)&pkcsBlock[i], (POINTER)input, inputLen);

	status = rsaprivatefunc(output, outputLen, pkcsBlock, modulusLen, privateKey);

	/* Clear sensitive information. */

	R_memset((POINTER)pkcsBlock, 0, sizeof(pkcsBlock));

	return(status);
}

/* RSA decryption, according to RSADSI's PKCS #1. */

int RSAPrivateDecrypt(output, outputLen, input, inputLen, privateKey)
unsigned char *output;          /* output block */
unsigned int *outputLen;        /* length of output block */
unsigned char *input;           /* input block */
unsigned int inputLen;          /* length of input block */
R_RSA_PRIVATE_KEY *privateKey;  /* RSA private key */
{
	int status;
	unsigned char pkcsBlock[MAX_RSA_MODULUS_LEN];
	unsigned int i, modulusLen, pkcsBlockLen;

	modulusLen = (privateKey->bits + 7) / 8;

	if(inputLen > modulusLen)
		return (RE_LEN);

	status = rsaprivatefunc(pkcsBlock, &pkcsBlockLen, input, inputLen, privateKey);
	if(status)
		return (status);

	if(pkcsBlockLen != modulusLen)
		return (RE_LEN);

	/* We require block type 2. */

	if((*pkcsBlock != 0) || (*(pkcsBlock+1) != 2))
	 return (RE_DATA);

	for(i = 2; i < modulusLen-1; i++)
		/* separator */
		if (*(pkcsBlock+i) == 0)
			break;

	i++;
	if(i >= modulusLen)
		return(RE_DATA);

	*outputLen = modulusLen - i;

	if(*outputLen + 11 > modulusLen)
		return(RE_DATA);

	R_memcpy((POINTER)output, (POINTER)&pkcsBlock[i], *outputLen);

	/* Clear sensitive information. */
	R_memset((POINTER)pkcsBlock, 0, sizeof(pkcsBlock));

	return(ID_OK);
}

/* Raw RSA public-key operation. Output has same length as modulus.

	 Requires input < modulus.
*/
static int rsapublicfunc(output, outputLen, input, inputLen, publicKey)
unsigned char *output;          /* output block */
unsigned int *outputLen;        /* length of output block */
unsigned char *input;           /* input block */
unsigned int inputLen;          /* length of input block */
R_RSA_PUBLIC_KEY *publicKey;    /* RSA public key */
{
	NN_DIGIT c[MAX_NN_DIGITS], e[MAX_NN_DIGITS], m[MAX_NN_DIGITS],
		n[MAX_NN_DIGITS];
	unsigned int eDigits, nDigits;


		/* decode the required RSA function input data */
	NN_Decode(m, MAX_NN_DIGITS, input, inputLen);
	NN_Decode(n, MAX_NN_DIGITS, publicKey->modulus, MAX_RSA_MODULUS_LEN);
	NN_Decode(e, MAX_NN_DIGITS, publicKey->exponent, MAX_RSA_MODULUS_LEN);

	nDigits = NN_Digits(n, MAX_NN_DIGITS);
	eDigits = NN_Digits(e, MAX_NN_DIGITS);

	if(NN_Cmp(m, n, nDigits) >= 0)
		return(RE_DATA);

	*outputLen = (publicKey->bits + 7) / 8;

	/* Compute c = m^e mod n.  To perform actual RSA calc.*/

	NN_ModExp (c, m, e, eDigits, n, nDigits);

	/* encode output to standard form */
	NN_Encode (output, *outputLen, c, nDigits);

	/* Clear sensitive information. */

	R_memset((POINTER)c, 0, sizeof(c));
	R_memset((POINTER)m, 0, sizeof(m));

	return(ID_OK);
}

/* Raw RSA private-key operation. Output has same length as modulus.

	 Requires input < modulus.
*/

static int rsaprivatefunc(output, outputLen, input, inputLen, privateKey)
unsigned char *output;          /* output block */
unsigned int *outputLen;        /* length of output block */
unsigned char *input;           /* input block */
unsigned int inputLen;          /* length of input block */
R_RSA_PRIVATE_KEY *privateKey;  /* RSA private key */
{
/*
	NN_DIGIT c[MAX_NN_DIGITS], d[MAX_NN_DIGITS], m[MAX_NN_DIGITS],
		n[MAX_NN_DIGITS];
	unsigned int dDigits, nDigits;


		// decode the required RSA function input data 
	NN_Decode(c, MAX_NN_DIGITS, input, inputLen);
	NN_Decode(n, MAX_NN_DIGITS, privateKey->modulus, MAX_RSA_MODULUS_LEN);
	NN_Decode(d, MAX_NN_DIGITS, privateKey->exponent, MAX_RSA_MODULUS_LEN);

	nDigits = NN_Digits(n, MAX_NN_DIGITS);
	dDigits = NN_Digits(d, MAX_NN_DIGITS);

	if(NN_Cmp(c, n, nDigits) >= 0)
		return(RE_DATA);

	*outputLen = (privateKey->bits + 7) / 8;

	// Compute m = c^d mod n.  To perform actual RSA calc.

	NN_ModExp (m, c, d, dDigits, n, nDigits);

	// encode output to standard form 
	NN_Encode (output, *outputLen, m, nDigits);

	// Clear sensitive information. 

	R_memset((POINTER)c, 0, sizeof(c));
	R_memset((POINTER)m, 0, sizeof(m));

	return(ID_OK);

*/	
	
	
	NN_DIGIT c[MAX_NN_DIGITS], cP[MAX_NN_DIGITS], cQ[MAX_NN_DIGITS],
		dP[MAX_NN_DIGITS], dQ[MAX_NN_DIGITS], mP[MAX_NN_DIGITS],
		mQ[MAX_NN_DIGITS], n[MAX_NN_DIGITS], p[MAX_NN_DIGITS], q[MAX_NN_DIGITS],
		qInv[MAX_NN_DIGITS], t[MAX_NN_DIGITS];
	unsigned int cDigits, nDigits, pDigits;

	// decode required input data from standard form 
	NN_Decode(c, MAX_NN_DIGITS, input, inputLen);           // input 

					// private key data 
	NN_Decode(p, MAX_NN_DIGITS, privateKey->prime[0], MAX_RSA_PRIME_LEN);
	NN_Decode(q, MAX_NN_DIGITS, privateKey->prime[1], MAX_RSA_PRIME_LEN);
	NN_Decode(dP, MAX_NN_DIGITS, privateKey->primeExponent[0], MAX_RSA_PRIME_LEN);
	NN_Decode(dQ, MAX_NN_DIGITS, privateKey->primeExponent[1], MAX_RSA_PRIME_LEN);
	NN_Decode(n, MAX_NN_DIGITS, privateKey->modulus, MAX_RSA_MODULUS_LEN);
	NN_Decode(qInv, MAX_NN_DIGITS, privateKey->coefficient, MAX_RSA_PRIME_LEN);
		// work out lengths of input components 

    cDigits = NN_Digits(c, MAX_NN_DIGITS);
    pDigits = NN_Digits(p, MAX_NN_DIGITS);
	nDigits = NN_Digits(n, MAX_NN_DIGITS);


	if(NN_Cmp(c, n, nDigits) >= 0)
		return(RE_DATA);

	*outputLen = (privateKey->bits + 7) / 8;

	// Compute mP = cP^dP mod p  and  mQ = cQ^dQ mod q. (Assumes q has
	//	 length at most pDigits, i.e., p > q.)
	

	NN_Mod(cP, c, cDigits, p, pDigits);
	NN_Mod(cQ, c, cDigits, q, pDigits);

	NN_AssignZero(mP, nDigits);
	NN_ModExp(mP, cP, dP, pDigits, p, pDigits);

	NN_AssignZero(mQ, nDigits);
	NN_ModExp(mQ, cQ, dQ, pDigits, q, pDigits);

	// Chinese Remainder Theorem:
	//		m = ((((mP - mQ) mod p) * qInv) mod p) * q + mQ.
	
	if(NN_Cmp(mP, mQ, pDigits) >= 0) {
		NN_Sub(t, mP, mQ, pDigits);
	}else{
		NN_Sub(t, mQ, mP, pDigits);
		NN_Sub(t, p, t, pDigits);
	}

	NN_ModMult(t, t, qInv, p, pDigits);
	NN_Mult(t, t, q, pDigits);
	NN_Add(t, t, mQ, nDigits);

	// encode output to standard form 
	NN_Encode (output, *outputLen, t, nDigits);

	// Clear sensitive information. 
	R_memset((POINTER)c, 0, sizeof(c));
	R_memset((POINTER)cP, 0, sizeof(cP));
	R_memset((POINTER)cQ, 0, sizeof(cQ));
	R_memset((POINTER)dP, 0, sizeof(dP));
	R_memset((POINTER)dQ, 0, sizeof(dQ));
	R_memset((POINTER)mP, 0, sizeof(mP));
	R_memset((POINTER)mQ, 0, sizeof(mQ));
	R_memset((POINTER)p, 0, sizeof(p));
	R_memset((POINTER)q, 0, sizeof(q));
	R_memset((POINTER)qInv, 0, sizeof(qInv));
	R_memset((POINTER)t, 0, sizeof(t));
	return(ID_OK);

}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -