⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 r_keygen.c

📁 加密算法源代码DES&RSA
💻 C
字号:
#include "rsa_incl.h"
#include "r_random.h"
#include "nn.h"
#include "prime.h"

static int RSAFilter PROTO_LIST
	((NN_DIGIT *, unsigned int, NN_DIGIT *, unsigned int));

/* Generates an RSA key pair with a given length and public exponent. */

int R_GeneratePEMKeys(publicKey, privateKey, protoKey, randomStruct)
R_RSA_PUBLIC_KEY *publicKey;    /* new RSA public key */
R_RSA_PRIVATE_KEY *privateKey;  /* new RSA private key */
R_RSA_PROTO_KEY *protoKey;      /* RSA prototype key */
R_RANDOM_STRUCT *randomStruct;  /* random structure */
{
/*  my function */
/*
	NN_DIGIT d[MAX_NN_DIGITS], dP[MAX_NN_DIGITS], dQ[MAX_NN_DIGITS],
		e[MAX_NN_DIGITS], n[MAX_NN_DIGITS], p[MAX_NN_DIGITS], phiN[MAX_NN_DIGITS],
		phiN_inc[MAX_NN_DIGITS],
//		temp[MAX_NN_DIGITS],
		pMinus1[MAX_NN_DIGITS], q[MAX_NN_DIGITS], qInv[MAX_NN_DIGITS],
		qMinus1[MAX_NN_DIGITS], t[MAX_NN_DIGITS], u[MAX_NN_DIGITS],
		v[MAX_NN_DIGITS];
	int status;
	unsigned int nDigits, pBits, pDigits, qBits;
    unsigned char block[MAX_NN_DIGITS * NN_DIGIT_LEN];

	if((protoKey->bits < MIN_RSA_MODULUS_BITS) || (protoKey->bits > MAX_RSA_MODULUS_BITS))
		return(RE_MODULUS_LEN);

	nDigits = (protoKey->bits + NN_DIGIT_BITS - 1) / NN_DIGIT_BITS;		//32
	pDigits = (nDigits + 1) / 2;	//16
	pBits = (protoKey->bits + 1) / 2;	//512
	qBits = protoKey->bits - pBits;		//496

	// NB: for 65537, this means that NN_DIGIT is at least 17 bits
	//	 in length. 

//	NN_ASSIGN_DIGIT(e, protoKey->useFermat4 ? (NN_DIGIT)65537 : (NN_DIGIT)3, nDigits);

	// Generate prime p between 3*2^(pBits-2) and 2^pBits-1, searching
	//	 in steps of 2, until one satisfies gcd (p-1, e) = 1. 

	NN_Assign2Exp(t, pBits-1, pDigits);		//t=2^511
	NN_Assign2Exp(u, pBits-2, pDigits);		//u=2^510
	NN_Add(t, t, u, pDigits);				//t=3*2^510
	NN_ASSIGN_DIGIT(v, 1, pDigits);			//v=1
	NN_Sub(v, t, v, pDigits);				//v=3*2^510-1
	NN_Add(u, u, v, pDigits);				//u=2^512-1
	NN_ASSIGN_DIGIT(v, 2, pDigits);			//v=2

	if(status = GeneratePrime(p, t, u, v, pDigits, randomStruct))
		return(status);		//3*2^510<p<2^512-1 && (p-1)%2=0

	// Generate prime q between 3*2^(qBits-2) and 2^qBits-1, searching
	//	 in steps of 2, until one satisfies gcd (q-1, e) = 1. 

	NN_Assign2Exp(t, qBits-1, pDigits);
	NN_Assign2Exp(u, qBits-2, pDigits);
	NN_Add(t, t, u, pDigits);
	NN_ASSIGN_DIGIT(v, 1, pDigits);
	NN_Sub(v, t, v, pDigits);
	NN_Add(u, u, v, pDigits);
	NN_ASSIGN_DIGIT(v, 2, pDigits);

	if(status = GeneratePrime(q, t, u, v, pDigits, randomStruct))
		return(status);

	// Sort so that p > q. (p = q case is extremely unlikely. 

	if(NN_Cmp(p, q, pDigits) < 0) {
		NN_Assign(t, p, pDigits);
		NN_Assign(p, q, pDigits);
		NN_Assign(q, t, pDigits);
	}

	// Compute n = pq, qInv = q^{-1} mod p, d = e^{-1} mod (p-1)(q-1),
	//	 dP = d mod p-1, dQ = d mod q-1. 

	NN_Mult(n, p, q, pDigits);
	NN_ModInv(qInv, q, p, pDigits);

	NN_ASSIGN_DIGIT(t, 1, pDigits);
	NN_Sub(pMinus1, p, t, pDigits);
	NN_Sub(qMinus1, q, t, pDigits);
	NN_Mult(phiN, pMinus1, qMinus1, pDigits);

	NN_ASSIGN_DIGIT(t, 1, nDigits);
	NN_Add(phiN_inc, phiN, t, nDigits);

    // Generate random number . 
	do {
	    status = R_GenerateBytes(block, nDigits * NN_DIGIT_LEN, randomStruct);
	    if(status)
		    return(status);
	    NN_Decode(e, nDigits, block, nDigits * NN_DIGIT_LEN);
	}while(!RSAFilter(phiN_inc, nDigits, e, nDigits));

	NN_ModInv(d, e, phiN, nDigits);
	NN_Mod(dP, d, nDigits, pMinus1, pDigits);
	NN_Mod(dQ, d, nDigits, qMinus1, pDigits);

	publicKey->bits = privateKey->bits = protoKey->bits;
	NN_Encode(publicKey->modulus, MAX_RSA_MODULUS_LEN, n, nDigits);
	NN_Encode(publicKey->exponent, MAX_RSA_MODULUS_LEN, e, nDigits);
	R_memcpy((POINTER)privateKey->modulus, (POINTER)publicKey->modulus, MAX_RSA_MODULUS_LEN);
	R_memcpy((POINTER)privateKey->publicExponent, (POINTER)publicKey->exponent, MAX_RSA_MODULUS_LEN);
	NN_Encode(privateKey->exponent, MAX_RSA_MODULUS_LEN, d, nDigits);
	NN_Encode(privateKey->prime[0], MAX_RSA_PRIME_LEN, p, pDigits);
	NN_Encode(privateKey->prime[1], MAX_RSA_PRIME_LEN, q, pDigits);
	NN_Encode(privateKey->primeExponent[0], MAX_RSA_PRIME_LEN, dP, pDigits);
	NN_Encode(privateKey->primeExponent[1], MAX_RSA_PRIME_LEN, dQ, pDigits);
	NN_Encode(privateKey->coefficient, MAX_RSA_PRIME_LEN, qInv, pDigits);

	// Clear sensitive information. 

	R_memset((POINTER)d, 0, sizeof(d));
	R_memset((POINTER)dP, 0, sizeof(dP));
	R_memset((POINTER)dQ, 0, sizeof(dQ));
	R_memset((POINTER)p, 0, sizeof(p));
	R_memset((POINTER)phiN, 0, sizeof(phiN));
	R_memset((POINTER)phiN_inc, 0, sizeof(phiN));
	R_memset((POINTER)pMinus1, 0, sizeof(pMinus1));
	R_memset((POINTER)q, 0, sizeof(q));
	R_memset((POINTER)qInv, 0, sizeof(qInv));
	R_memset((POINTER)qMinus1, 0, sizeof(qMinus1));
	R_memset((POINTER)t, 0, sizeof(t));

	return (0);
*/
/* older function */
//////////////////////////////////////////////////////////

	NN_DIGIT d[MAX_NN_DIGITS], dP[MAX_NN_DIGITS], dQ[MAX_NN_DIGITS],
		e[MAX_NN_DIGITS], n[MAX_NN_DIGITS], p[MAX_NN_DIGITS], phiN[MAX_NN_DIGITS],
		pMinus1[MAX_NN_DIGITS], q[MAX_NN_DIGITS], qInv[MAX_NN_DIGITS],
		qMinus1[MAX_NN_DIGITS], t[MAX_NN_DIGITS], u[MAX_NN_DIGITS],
		v[MAX_NN_DIGITS];
	int status;
	unsigned int nDigits, pBits, pDigits, qBits;

	if((protoKey->bits < MIN_RSA_MODULUS_BITS) || (protoKey->bits > MAX_RSA_MODULUS_BITS))
		return(RE_MODULUS_LEN);

	nDigits = (protoKey->bits + NN_DIGIT_BITS - 1) / NN_DIGIT_BITS;		//32
	pDigits = (nDigits + 1) / 2;	//16
	pBits = (protoKey->bits + 1) / 2;	//512
	qBits = protoKey->bits - pBits;		//496

	// NB: for 65537, this means that NN_DIGIT is at least 17 bits in length. 

	NN_ASSIGN_DIGIT(e, protoKey->useFermat4 ? (NN_DIGIT)65537 : (NN_DIGIT)3, nDigits);

	// Generate prime p between 3*2^(pBits-2) and 2^pBits-1, searching
	//	 in steps of 2, until one satisfies gcd (p-1, e) = 1. 

	NN_Assign2Exp(t, pBits-1, pDigits);		//t=2^511
	NN_Assign2Exp(u, pBits-2, pDigits);		//u=2^510
	NN_Add(t, t, u, pDigits);				//t=3*2^510
	NN_ASSIGN_DIGIT(v, 1, pDigits);			//v=1
	NN_Sub(v, t, v, pDigits);				//v=3*2^510-1
	NN_Add(u, u, v, pDigits);				//u=2^512-1
	NN_ASSIGN_DIGIT(v, 2, pDigits);			//v=2

	do {
		if(status = GeneratePrime(p, t, u, v, pDigits, randomStruct))
			return(status);		//3*2^510<p<2^512-1 && (p-1)%2=0
	}while(!RSAFilter(p, pDigits, e, 1));

	// Generate prime q between 3*2^(qBits-2) and 2^qBits-1, searching
	//	 in steps of 2, until one satisfies gcd (q-1, e) = 1. 

	NN_Assign2Exp(t, qBits-1, pDigits);
	NN_Assign2Exp(u, qBits-2, pDigits);
	NN_Add(t, t, u, pDigits);
	NN_ASSIGN_DIGIT(v, 1, pDigits);
	NN_Sub(v, t, v, pDigits);
	NN_Add(u, u, v, pDigits);
	NN_ASSIGN_DIGIT(v, 2, pDigits);

	do {
		if(status = GeneratePrime(q, t, u, v, pDigits, randomStruct))
			return(status);
	}while(!RSAFilter(q, pDigits, e, 1));

	// Sort so that p > q. (p = q case is extremely unlikely. 

	if(NN_Cmp(p, q, pDigits) < 0) {
		NN_Assign(t, p, pDigits);
		NN_Assign(p, q, pDigits);
		NN_Assign(q, t, pDigits);
	}

	// Compute n = pq, qInv = q^{-1} mod p, d = e^{-1} mod (p-1)(q-1),
	//	 dP = d mod p-1, dQ = d mod q-1. 

	NN_Mult(n, p, q, pDigits);
	NN_ModInv(qInv, q, p, pDigits);

	NN_ASSIGN_DIGIT(t, 1, pDigits);
	NN_Sub(pMinus1, p, t, pDigits);
	NN_Sub(qMinus1, q, t, pDigits);
	NN_Mult(phiN, pMinus1, qMinus1, pDigits);

	NN_ModInv(d, e, phiN, nDigits);
	NN_Mod(dP, d, nDigits, pMinus1, pDigits);
	NN_Mod(dQ, d, nDigits, qMinus1, pDigits);

	NN_ModInv(d, e, phiN, nDigits);
	NN_Mod(dP, d, nDigits, pMinus1, pDigits);
	NN_Mod(dQ, d, nDigits, qMinus1, pDigits);

	publicKey->bits = privateKey->bits = protoKey->bits;
	NN_Encode(publicKey->modulus, MAX_RSA_MODULUS_LEN, n, nDigits);
	NN_Encode(publicKey->exponent, MAX_RSA_MODULUS_LEN, e, 1);
	R_memcpy((POINTER)privateKey->modulus, (POINTER)publicKey->modulus, MAX_RSA_MODULUS_LEN);
	R_memcpy((POINTER)privateKey->publicExponent, (POINTER)publicKey->exponent, MAX_RSA_MODULUS_LEN);
	NN_Encode(privateKey->exponent, MAX_RSA_MODULUS_LEN, d, nDigits);
	NN_Encode(privateKey->prime[0], MAX_RSA_PRIME_LEN, p, pDigits);
	NN_Encode(privateKey->prime[1], MAX_RSA_PRIME_LEN, q, pDigits);
	NN_Encode(privateKey->primeExponent[0], MAX_RSA_PRIME_LEN, dP, pDigits);
	NN_Encode(privateKey->primeExponent[1], MAX_RSA_PRIME_LEN, dQ, pDigits);
	NN_Encode(privateKey->coefficient, MAX_RSA_PRIME_LEN, qInv, pDigits);

	// Clear sensitive information. 

	R_memset((POINTER)d, 0, sizeof(d));
	R_memset((POINTER)dP, 0, sizeof(dP));
	R_memset((POINTER)dQ, 0, sizeof(dQ));
	R_memset((POINTER)p, 0, sizeof(p));
	R_memset((POINTER)phiN, 0, sizeof(phiN));
	R_memset((POINTER)pMinus1, 0, sizeof(pMinus1));
	R_memset((POINTER)q, 0, sizeof(q));
	R_memset((POINTER)qInv, 0, sizeof(qInv));
	R_memset((POINTER)qMinus1, 0, sizeof(qMinus1));
	R_memset((POINTER)t, 0, sizeof(t));

	return (0);

/* all set zero*/
/*	NN_DIGIT d[MAX_NN_DIGITS], dP[MAX_NN_DIGITS], dQ[MAX_NN_DIGITS],
		phiN_inc[MAX_NN_DIGITS],temp[MAX_NN_DIGITS],
		e[MAX_NN_DIGITS], n[MAX_NN_DIGITS], p[MAX_NN_DIGITS], phiN[MAX_NN_DIGITS],
		pMinus1[MAX_NN_DIGITS], q[MAX_NN_DIGITS], qInv[MAX_NN_DIGITS],
		qMinus1[MAX_NN_DIGITS], t[MAX_NN_DIGITS], u[MAX_NN_DIGITS],
		v[MAX_NN_DIGITS];
	int status;
	unsigned int nDigits, pBits, pDigits, qBits;
    unsigned char block[MAX_NN_DIGITS * NN_DIGIT_LEN];


	R_memset((POINTER)d, 0, sizeof(d));
	R_memset((POINTER)dP, 0, sizeof(dP));
	R_memset((POINTER)dQ, 0, sizeof(dQ));
	R_memset((POINTER)p, 0, sizeof(p));
	R_memset((POINTER)phiN, 0, sizeof(phiN));
	R_memset((POINTER)pMinus1, 0, sizeof(pMinus1));
	R_memset((POINTER)q, 0, sizeof(q));
	R_memset((POINTER)qInv, 0, sizeof(qInv));
	R_memset((POINTER)qMinus1, 0, sizeof(qMinus1));
	R_memset((POINTER)t, 0, sizeof(t));


	publicKey->bits = privateKey->bits = protoKey->bits;
	NN_Encode(publicKey->modulus, MAX_RSA_MODULUS_LEN, n, nDigits);
	NN_Encode(publicKey->exponent, MAX_RSA_MODULUS_LEN, e, 1);
	R_memcpy((POINTER)privateKey->modulus, (POINTER)publicKey->modulus, MAX_RSA_MODULUS_LEN);
	R_memcpy((POINTER)privateKey->publicExponent, (POINTER)publicKey->exponent, MAX_RSA_MODULUS_LEN);
	NN_Encode(privateKey->exponent, MAX_RSA_MODULUS_LEN, d, nDigits);
	NN_Endom strucncode(privateKey->prime[0], MAX_RSA_PRIME_LEN, p, pDigits);
	NN_Encode(privateKey->prime[1], MAX_RSA_PRIME_LEN, q, pDigits);
	NN_Encode(privateKey->primeExponent[0], MAX_RSA_PRIME_LEN, dP, pDigits);
	NN_Encode(privateKey->primeExponent[1], MAX_RSA_PRIME_LEN, dQ, pDigits);
	NN_Encode(privateKey->coefficient, MAX_RSA_PRIME_LEN, qInv, pDigits);

	// Clear sensitive information. 

	R_memset((POINTER)d, 0, sizeof(d));
	R_memset((POINTER)dP, 0, sizeof(dP));
	R_memset((POINTER)dQ, 0, sizeof(dQ));
	R_memset((POINTER)p, 0, sizeof(p));
	R_memset((POINTER)phiN, 0, sizeof(phiN));
	R_memset((POINTER)pMinus1, 0, sizeof(pMinus1));
	R_memset((POINTER)q, 0, sizeof(q));
	R_memset((POINTER)qInv, 0, sizeof(qInv));
	R_memset((POINTER)qMinus1, 0, sizeof(qMinus1));
	R_memset((POINTER)t, 0, sizeof(t));

	return (0);
*/
}

/* Returns nonzero iff GCD (a-1, b) = 1.
	 Assumes aDigits < MAX_NN_DIGITS, bDigits < MAX_NN_DIGITS. */

static int RSAFilter(a, aDigits, b, bDigits)
NN_DIGIT *a, *b;
unsigned int aDigits, bDigits;
{
	int status = 0;
	NN_DIGIT aMinus1[MAX_NN_DIGITS], t[MAX_NN_DIGITS];
	NN_DIGIT u[MAX_NN_DIGITS];

	NN_ASSIGN_DIGIT(t, 1, aDigits);
	NN_Sub(aMinus1, a, t, aDigits);

	NN_Gcd(u, aMinus1, b, aDigits);

	status = NN_EQUAL(t, u, aDigits);

	R_memset((POINTER)aMinus1, 0, sizeof(aMinus1));

	return(status);
}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -