📄 r_keygen.c
字号:
#include "rsa_incl.h"
#include "r_random.h"
#include "nn.h"
#include "prime.h"
static int RSAFilter PROTO_LIST
((NN_DIGIT *, unsigned int, NN_DIGIT *, unsigned int));
/* Generates an RSA key pair with a given length and public exponent. */
int R_GeneratePEMKeys(publicKey, privateKey, protoKey, randomStruct)
R_RSA_PUBLIC_KEY *publicKey; /* new RSA public key */
R_RSA_PRIVATE_KEY *privateKey; /* new RSA private key */
R_RSA_PROTO_KEY *protoKey; /* RSA prototype key */
R_RANDOM_STRUCT *randomStruct; /* random structure */
{
/* my function */
/*
NN_DIGIT d[MAX_NN_DIGITS], dP[MAX_NN_DIGITS], dQ[MAX_NN_DIGITS],
e[MAX_NN_DIGITS], n[MAX_NN_DIGITS], p[MAX_NN_DIGITS], phiN[MAX_NN_DIGITS],
phiN_inc[MAX_NN_DIGITS],
// temp[MAX_NN_DIGITS],
pMinus1[MAX_NN_DIGITS], q[MAX_NN_DIGITS], qInv[MAX_NN_DIGITS],
qMinus1[MAX_NN_DIGITS], t[MAX_NN_DIGITS], u[MAX_NN_DIGITS],
v[MAX_NN_DIGITS];
int status;
unsigned int nDigits, pBits, pDigits, qBits;
unsigned char block[MAX_NN_DIGITS * NN_DIGIT_LEN];
if((protoKey->bits < MIN_RSA_MODULUS_BITS) || (protoKey->bits > MAX_RSA_MODULUS_BITS))
return(RE_MODULUS_LEN);
nDigits = (protoKey->bits + NN_DIGIT_BITS - 1) / NN_DIGIT_BITS; //32
pDigits = (nDigits + 1) / 2; //16
pBits = (protoKey->bits + 1) / 2; //512
qBits = protoKey->bits - pBits; //496
// NB: for 65537, this means that NN_DIGIT is at least 17 bits
// in length.
// NN_ASSIGN_DIGIT(e, protoKey->useFermat4 ? (NN_DIGIT)65537 : (NN_DIGIT)3, nDigits);
// Generate prime p between 3*2^(pBits-2) and 2^pBits-1, searching
// in steps of 2, until one satisfies gcd (p-1, e) = 1.
NN_Assign2Exp(t, pBits-1, pDigits); //t=2^511
NN_Assign2Exp(u, pBits-2, pDigits); //u=2^510
NN_Add(t, t, u, pDigits); //t=3*2^510
NN_ASSIGN_DIGIT(v, 1, pDigits); //v=1
NN_Sub(v, t, v, pDigits); //v=3*2^510-1
NN_Add(u, u, v, pDigits); //u=2^512-1
NN_ASSIGN_DIGIT(v, 2, pDigits); //v=2
if(status = GeneratePrime(p, t, u, v, pDigits, randomStruct))
return(status); //3*2^510<p<2^512-1 && (p-1)%2=0
// Generate prime q between 3*2^(qBits-2) and 2^qBits-1, searching
// in steps of 2, until one satisfies gcd (q-1, e) = 1.
NN_Assign2Exp(t, qBits-1, pDigits);
NN_Assign2Exp(u, qBits-2, pDigits);
NN_Add(t, t, u, pDigits);
NN_ASSIGN_DIGIT(v, 1, pDigits);
NN_Sub(v, t, v, pDigits);
NN_Add(u, u, v, pDigits);
NN_ASSIGN_DIGIT(v, 2, pDigits);
if(status = GeneratePrime(q, t, u, v, pDigits, randomStruct))
return(status);
// Sort so that p > q. (p = q case is extremely unlikely.
if(NN_Cmp(p, q, pDigits) < 0) {
NN_Assign(t, p, pDigits);
NN_Assign(p, q, pDigits);
NN_Assign(q, t, pDigits);
}
// Compute n = pq, qInv = q^{-1} mod p, d = e^{-1} mod (p-1)(q-1),
// dP = d mod p-1, dQ = d mod q-1.
NN_Mult(n, p, q, pDigits);
NN_ModInv(qInv, q, p, pDigits);
NN_ASSIGN_DIGIT(t, 1, pDigits);
NN_Sub(pMinus1, p, t, pDigits);
NN_Sub(qMinus1, q, t, pDigits);
NN_Mult(phiN, pMinus1, qMinus1, pDigits);
NN_ASSIGN_DIGIT(t, 1, nDigits);
NN_Add(phiN_inc, phiN, t, nDigits);
// Generate random number .
do {
status = R_GenerateBytes(block, nDigits * NN_DIGIT_LEN, randomStruct);
if(status)
return(status);
NN_Decode(e, nDigits, block, nDigits * NN_DIGIT_LEN);
}while(!RSAFilter(phiN_inc, nDigits, e, nDigits));
NN_ModInv(d, e, phiN, nDigits);
NN_Mod(dP, d, nDigits, pMinus1, pDigits);
NN_Mod(dQ, d, nDigits, qMinus1, pDigits);
publicKey->bits = privateKey->bits = protoKey->bits;
NN_Encode(publicKey->modulus, MAX_RSA_MODULUS_LEN, n, nDigits);
NN_Encode(publicKey->exponent, MAX_RSA_MODULUS_LEN, e, nDigits);
R_memcpy((POINTER)privateKey->modulus, (POINTER)publicKey->modulus, MAX_RSA_MODULUS_LEN);
R_memcpy((POINTER)privateKey->publicExponent, (POINTER)publicKey->exponent, MAX_RSA_MODULUS_LEN);
NN_Encode(privateKey->exponent, MAX_RSA_MODULUS_LEN, d, nDigits);
NN_Encode(privateKey->prime[0], MAX_RSA_PRIME_LEN, p, pDigits);
NN_Encode(privateKey->prime[1], MAX_RSA_PRIME_LEN, q, pDigits);
NN_Encode(privateKey->primeExponent[0], MAX_RSA_PRIME_LEN, dP, pDigits);
NN_Encode(privateKey->primeExponent[1], MAX_RSA_PRIME_LEN, dQ, pDigits);
NN_Encode(privateKey->coefficient, MAX_RSA_PRIME_LEN, qInv, pDigits);
// Clear sensitive information.
R_memset((POINTER)d, 0, sizeof(d));
R_memset((POINTER)dP, 0, sizeof(dP));
R_memset((POINTER)dQ, 0, sizeof(dQ));
R_memset((POINTER)p, 0, sizeof(p));
R_memset((POINTER)phiN, 0, sizeof(phiN));
R_memset((POINTER)phiN_inc, 0, sizeof(phiN));
R_memset((POINTER)pMinus1, 0, sizeof(pMinus1));
R_memset((POINTER)q, 0, sizeof(q));
R_memset((POINTER)qInv, 0, sizeof(qInv));
R_memset((POINTER)qMinus1, 0, sizeof(qMinus1));
R_memset((POINTER)t, 0, sizeof(t));
return (0);
*/
/* older function */
//////////////////////////////////////////////////////////
NN_DIGIT d[MAX_NN_DIGITS], dP[MAX_NN_DIGITS], dQ[MAX_NN_DIGITS],
e[MAX_NN_DIGITS], n[MAX_NN_DIGITS], p[MAX_NN_DIGITS], phiN[MAX_NN_DIGITS],
pMinus1[MAX_NN_DIGITS], q[MAX_NN_DIGITS], qInv[MAX_NN_DIGITS],
qMinus1[MAX_NN_DIGITS], t[MAX_NN_DIGITS], u[MAX_NN_DIGITS],
v[MAX_NN_DIGITS];
int status;
unsigned int nDigits, pBits, pDigits, qBits;
if((protoKey->bits < MIN_RSA_MODULUS_BITS) || (protoKey->bits > MAX_RSA_MODULUS_BITS))
return(RE_MODULUS_LEN);
nDigits = (protoKey->bits + NN_DIGIT_BITS - 1) / NN_DIGIT_BITS; //32
pDigits = (nDigits + 1) / 2; //16
pBits = (protoKey->bits + 1) / 2; //512
qBits = protoKey->bits - pBits; //496
// NB: for 65537, this means that NN_DIGIT is at least 17 bits in length.
NN_ASSIGN_DIGIT(e, protoKey->useFermat4 ? (NN_DIGIT)65537 : (NN_DIGIT)3, nDigits);
// Generate prime p between 3*2^(pBits-2) and 2^pBits-1, searching
// in steps of 2, until one satisfies gcd (p-1, e) = 1.
NN_Assign2Exp(t, pBits-1, pDigits); //t=2^511
NN_Assign2Exp(u, pBits-2, pDigits); //u=2^510
NN_Add(t, t, u, pDigits); //t=3*2^510
NN_ASSIGN_DIGIT(v, 1, pDigits); //v=1
NN_Sub(v, t, v, pDigits); //v=3*2^510-1
NN_Add(u, u, v, pDigits); //u=2^512-1
NN_ASSIGN_DIGIT(v, 2, pDigits); //v=2
do {
if(status = GeneratePrime(p, t, u, v, pDigits, randomStruct))
return(status); //3*2^510<p<2^512-1 && (p-1)%2=0
}while(!RSAFilter(p, pDigits, e, 1));
// Generate prime q between 3*2^(qBits-2) and 2^qBits-1, searching
// in steps of 2, until one satisfies gcd (q-1, e) = 1.
NN_Assign2Exp(t, qBits-1, pDigits);
NN_Assign2Exp(u, qBits-2, pDigits);
NN_Add(t, t, u, pDigits);
NN_ASSIGN_DIGIT(v, 1, pDigits);
NN_Sub(v, t, v, pDigits);
NN_Add(u, u, v, pDigits);
NN_ASSIGN_DIGIT(v, 2, pDigits);
do {
if(status = GeneratePrime(q, t, u, v, pDigits, randomStruct))
return(status);
}while(!RSAFilter(q, pDigits, e, 1));
// Sort so that p > q. (p = q case is extremely unlikely.
if(NN_Cmp(p, q, pDigits) < 0) {
NN_Assign(t, p, pDigits);
NN_Assign(p, q, pDigits);
NN_Assign(q, t, pDigits);
}
// Compute n = pq, qInv = q^{-1} mod p, d = e^{-1} mod (p-1)(q-1),
// dP = d mod p-1, dQ = d mod q-1.
NN_Mult(n, p, q, pDigits);
NN_ModInv(qInv, q, p, pDigits);
NN_ASSIGN_DIGIT(t, 1, pDigits);
NN_Sub(pMinus1, p, t, pDigits);
NN_Sub(qMinus1, q, t, pDigits);
NN_Mult(phiN, pMinus1, qMinus1, pDigits);
NN_ModInv(d, e, phiN, nDigits);
NN_Mod(dP, d, nDigits, pMinus1, pDigits);
NN_Mod(dQ, d, nDigits, qMinus1, pDigits);
NN_ModInv(d, e, phiN, nDigits);
NN_Mod(dP, d, nDigits, pMinus1, pDigits);
NN_Mod(dQ, d, nDigits, qMinus1, pDigits);
publicKey->bits = privateKey->bits = protoKey->bits;
NN_Encode(publicKey->modulus, MAX_RSA_MODULUS_LEN, n, nDigits);
NN_Encode(publicKey->exponent, MAX_RSA_MODULUS_LEN, e, 1);
R_memcpy((POINTER)privateKey->modulus, (POINTER)publicKey->modulus, MAX_RSA_MODULUS_LEN);
R_memcpy((POINTER)privateKey->publicExponent, (POINTER)publicKey->exponent, MAX_RSA_MODULUS_LEN);
NN_Encode(privateKey->exponent, MAX_RSA_MODULUS_LEN, d, nDigits);
NN_Encode(privateKey->prime[0], MAX_RSA_PRIME_LEN, p, pDigits);
NN_Encode(privateKey->prime[1], MAX_RSA_PRIME_LEN, q, pDigits);
NN_Encode(privateKey->primeExponent[0], MAX_RSA_PRIME_LEN, dP, pDigits);
NN_Encode(privateKey->primeExponent[1], MAX_RSA_PRIME_LEN, dQ, pDigits);
NN_Encode(privateKey->coefficient, MAX_RSA_PRIME_LEN, qInv, pDigits);
// Clear sensitive information.
R_memset((POINTER)d, 0, sizeof(d));
R_memset((POINTER)dP, 0, sizeof(dP));
R_memset((POINTER)dQ, 0, sizeof(dQ));
R_memset((POINTER)p, 0, sizeof(p));
R_memset((POINTER)phiN, 0, sizeof(phiN));
R_memset((POINTER)pMinus1, 0, sizeof(pMinus1));
R_memset((POINTER)q, 0, sizeof(q));
R_memset((POINTER)qInv, 0, sizeof(qInv));
R_memset((POINTER)qMinus1, 0, sizeof(qMinus1));
R_memset((POINTER)t, 0, sizeof(t));
return (0);
/* all set zero*/
/* NN_DIGIT d[MAX_NN_DIGITS], dP[MAX_NN_DIGITS], dQ[MAX_NN_DIGITS],
phiN_inc[MAX_NN_DIGITS],temp[MAX_NN_DIGITS],
e[MAX_NN_DIGITS], n[MAX_NN_DIGITS], p[MAX_NN_DIGITS], phiN[MAX_NN_DIGITS],
pMinus1[MAX_NN_DIGITS], q[MAX_NN_DIGITS], qInv[MAX_NN_DIGITS],
qMinus1[MAX_NN_DIGITS], t[MAX_NN_DIGITS], u[MAX_NN_DIGITS],
v[MAX_NN_DIGITS];
int status;
unsigned int nDigits, pBits, pDigits, qBits;
unsigned char block[MAX_NN_DIGITS * NN_DIGIT_LEN];
R_memset((POINTER)d, 0, sizeof(d));
R_memset((POINTER)dP, 0, sizeof(dP));
R_memset((POINTER)dQ, 0, sizeof(dQ));
R_memset((POINTER)p, 0, sizeof(p));
R_memset((POINTER)phiN, 0, sizeof(phiN));
R_memset((POINTER)pMinus1, 0, sizeof(pMinus1));
R_memset((POINTER)q, 0, sizeof(q));
R_memset((POINTER)qInv, 0, sizeof(qInv));
R_memset((POINTER)qMinus1, 0, sizeof(qMinus1));
R_memset((POINTER)t, 0, sizeof(t));
publicKey->bits = privateKey->bits = protoKey->bits;
NN_Encode(publicKey->modulus, MAX_RSA_MODULUS_LEN, n, nDigits);
NN_Encode(publicKey->exponent, MAX_RSA_MODULUS_LEN, e, 1);
R_memcpy((POINTER)privateKey->modulus, (POINTER)publicKey->modulus, MAX_RSA_MODULUS_LEN);
R_memcpy((POINTER)privateKey->publicExponent, (POINTER)publicKey->exponent, MAX_RSA_MODULUS_LEN);
NN_Encode(privateKey->exponent, MAX_RSA_MODULUS_LEN, d, nDigits);
NN_Endom strucncode(privateKey->prime[0], MAX_RSA_PRIME_LEN, p, pDigits);
NN_Encode(privateKey->prime[1], MAX_RSA_PRIME_LEN, q, pDigits);
NN_Encode(privateKey->primeExponent[0], MAX_RSA_PRIME_LEN, dP, pDigits);
NN_Encode(privateKey->primeExponent[1], MAX_RSA_PRIME_LEN, dQ, pDigits);
NN_Encode(privateKey->coefficient, MAX_RSA_PRIME_LEN, qInv, pDigits);
// Clear sensitive information.
R_memset((POINTER)d, 0, sizeof(d));
R_memset((POINTER)dP, 0, sizeof(dP));
R_memset((POINTER)dQ, 0, sizeof(dQ));
R_memset((POINTER)p, 0, sizeof(p));
R_memset((POINTER)phiN, 0, sizeof(phiN));
R_memset((POINTER)pMinus1, 0, sizeof(pMinus1));
R_memset((POINTER)q, 0, sizeof(q));
R_memset((POINTER)qInv, 0, sizeof(qInv));
R_memset((POINTER)qMinus1, 0, sizeof(qMinus1));
R_memset((POINTER)t, 0, sizeof(t));
return (0);
*/
}
/* Returns nonzero iff GCD (a-1, b) = 1.
Assumes aDigits < MAX_NN_DIGITS, bDigits < MAX_NN_DIGITS. */
static int RSAFilter(a, aDigits, b, bDigits)
NN_DIGIT *a, *b;
unsigned int aDigits, bDigits;
{
int status = 0;
NN_DIGIT aMinus1[MAX_NN_DIGITS], t[MAX_NN_DIGITS];
NN_DIGIT u[MAX_NN_DIGITS];
NN_ASSIGN_DIGIT(t, 1, aDigits);
NN_Sub(aMinus1, a, t, aDigits);
NN_Gcd(u, aMinus1, b, aDigits);
status = NN_EQUAL(t, u, aDigits);
R_memset((POINTER)aMinus1, 0, sizeof(aMinus1));
return(status);
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -