📄 candidate_selection.m
字号:
%%%% Find a candidate model that maximizes log-likelihood %%%%%
%%%% and compute the weight a' %%%%%
%%%% (exclude from the search motif neighborhoods) %%%%%
%%%%%% %%%%%
%%%%%% Kostas Blekas, 19 Dec. 2001 %%%%%
%%%%%% please contact at kblekas@cc.uoi.gr in case of problems %%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [mpr_init,a,ind] = candidate_selection(fi,n,m,alpha,lambda,L,W,Ji,CP,C,extr)
a_value = zeros(1,m);
logl = zeros(1,m);
for i=1:m
if (extr(i)==1)
logl(i) = -1000000000000000.0;
else
delt = (fi - Ji(i,:)) ./ (fi + Ji(i,:));
a_value(i) = 0.5 - 0.5 * sum(delt) / sum(delt.^2);
if a_value(i) > 0
logl(i) = sum(log((fi + Ji(i,:))./2)) + 0.5*sum(delt)^2 / sum(delt.^2);
else
logl(i) = -1000000000000000.0;
end
end
end
[maxll ind] = max(logl);
mpr_init = ones(L,W) .* (1.0 - lambda)/(L-1);
for j=1:W
mpr_init(find(C(ind,j)==alpha),j) = lambda;
end
a = a_value(ind);
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -