📄 node2.html
字号:
<P></P><DIV ALIGN="CENTER" CLASS="mathdisplay"><IMG WIDTH="248" HEIGHT="28" ALIGN="MIDDLE" BORDER="0" SRC="img102.gif" ALT="$\displaystyle P(q_k\vert X,\ensuremath\boldsymbol{\Theta}) \propto p(X\vert q_k......dsymbol{\Theta})\; P(q_k\vert\ensuremath\boldsymbol{\Theta}), \quad \forall k$"></DIV><P></P><P></LI><LI>Once again, it is more convenient to do the computation in the
<SPAN CLASS="MATH"><IMG WIDTH="21" HEIGHT="26" ALIGN="MIDDLE" BORDER="0" SRC="img103.gif" ALT="$ \log$"></SPAN> domain:
<P></P><DIV ALIGN="CENTER" CLASS="mathdisplay"><A NAME="eq:log-decision-rule"></A><!-- MATH \begin{equation}\log P(q_k|X,\ensuremath\boldsymbol{\Theta}) \propto \log p(X|q_k,\ensuremath\boldsymbol{\Theta}) + \log P(q_k|\ensuremath\boldsymbol{\Theta})\end{equation} --><TABLE CLASS="equation" CELLPADDING="0" WIDTH="100%" ALIGN="CENTER"><TR VALIGN="MIDDLE"><TD NOWRAP ALIGN="CENTER"><SPAN CLASS="MATH"><IMG WIDTH="287" HEIGHT="28" ALIGN="MIDDLE" BORDER="0" SRC="img104.gif" ALT="$\displaystyle \log P(q_k\vert X,\ensuremath\boldsymbol{\Theta}) \propto \log p(......ensuremath\boldsymbol{\Theta}) + \log P(q_k\vert\ensuremath\boldsymbol{\Theta})$"></SPAN></TD><TD NOWRAP CLASS="eqno" WIDTH="10" ALIGN="RIGHT">(<SPAN CLASS="arabic">5</SPAN>)</TD></TR></TABLE></DIV><BR CLEAR="ALL"><P></P></LI></UL><P>In our case, <!-- MATH $\ensuremath\boldsymbol{\Theta}$ --><SPAN CLASS="MATH"><IMG WIDTH="16" HEIGHT="14" ALIGN="BOTTOM" BORDER="0" SRC="img61.gif" ALT="$ \ensuremath\boldsymbol{\Theta}$"></SPAN> represents the set of <SPAN CLASS="textit">all</SPAN> the means <!-- MATH $\ensuremath\boldsymbol{\mu}_k$ --><SPAN CLASS="MATH"><IMG WIDTH="20" HEIGHT="25" ALIGN="MIDDLE" BORDER="0" SRC="img105.gif" ALT="$ \ensuremath\boldsymbol{\mu}_k$"></SPAN>
and variances <!-- MATH $\ensuremath\boldsymbol{\Sigma}_k$ --><SPAN CLASS="MATH"><IMG WIDTH="22" HEIGHT="26" ALIGN="MIDDLE" BORDER="0" SRC="img106.gif" ALT="$ \ensuremath\boldsymbol{\Sigma}_k$"></SPAN>, <!-- MATH $k \in\{\text{/a/},\text{/e/},\text{/i/},\text{/o/},/u/\}$ --><SPAN CLASS="MATH"><IMG WIDTH="35" HEIGHT="28" ALIGN="MIDDLE" BORDER="0" SRC="img92.gif" ALT="$ k \in\{$">/a/<IMG WIDTH="7" HEIGHT="25" ALIGN="MIDDLE" BORDER="0" SRC="img93.gif" ALT="$ ,$">/e/<IMG WIDTH="7" HEIGHT="25" ALIGN="MIDDLE" BORDER="0" SRC="img93.gif" ALT="$ ,$">/i/<IMG WIDTH="7" HEIGHT="25" ALIGN="MIDDLE" BORDER="0" SRC="img93.gif" ALT="$ ,$">/o/<IMG WIDTH="38" HEIGHT="28" ALIGN="MIDDLE" BORDER="0" SRC="img107.gif" ALT="$ ,/u/\}$"></SPAN> of our data
generation model. <!-- MATH $p(X|q_k,\ensuremath\boldsymbol{\Theta})$ --><SPAN CLASS="MATH"><IMG WIDTH="70" HEIGHT="28" ALIGN="MIDDLE" BORDER="0" SRC="img108.gif" ALT="$ p(X\vert q_k,\ensuremath\boldsymbol{\Theta})$"></SPAN> and <!-- MATH $\log p(X|q_k,\ensuremath\boldsymbol{\Theta})$ --><SPAN CLASS="MATH"><IMG WIDTH="90" HEIGHT="28" ALIGN="MIDDLE" BORDER="0" SRC="img109.gif" ALT="$ \log p(X\vert q_k,\ensuremath\boldsymbol{\Theta})$"></SPAN> are the
joint likelihood and joint log-likelihood
(eq. <A HREF="node1.html#eq:joint-likelihood">2</A> in section <A HREF="node1.html#sec:likelihood">1.3</A>) of the
sample <SPAN CLASS="MATH"><IMG WIDTH="16" HEIGHT="14" ALIGN="BOTTOM" BORDER="0" SRC="img29.gif" ALT="$ X$"></SPAN> with respect to the model <!-- MATH $\ensuremath\boldsymbol{\Theta}$ --><SPAN CLASS="MATH"><IMG WIDTH="16" HEIGHT="14" ALIGN="BOTTOM" BORDER="0" SRC="img61.gif" ALT="$ \ensuremath\boldsymbol{\Theta}$"></SPAN> for class <SPAN CLASS="MATH"><IMG WIDTH="16" HEIGHT="25" ALIGN="MIDDLE" BORDER="0" SRC="img91.gif" ALT="$ q_k$"></SPAN> (i.e., the
model with parameter set <!-- MATH $(\ensuremath\boldsymbol{\mu}_k,\ensuremath\boldsymbol{\Sigma}_k)$ --><SPAN CLASS="MATH"><IMG WIDTH="56" HEIGHT="28" ALIGN="MIDDLE" BORDER="0" SRC="img110.gif" ALT="$ (\ensuremath\boldsymbol{\mu}_k,\ensuremath\boldsymbol{\Sigma}_k)$"></SPAN>).<P>The probability <!-- MATH $P(q_k|\ensuremath\boldsymbol{\Theta})$ --><SPAN CLASS="MATH"><IMG WIDTH="55" HEIGHT="28" ALIGN="MIDDLE" BORDER="0" SRC="img98.gif" ALT="$ P(q_k\vert\ensuremath\boldsymbol{\Theta})$"></SPAN> is the a-priori class probability for the
class <SPAN CLASS="MATH"><IMG WIDTH="16" HEIGHT="25" ALIGN="MIDDLE" BORDER="0" SRC="img91.gif" ALT="$ q_k$"></SPAN>. It defines an absolute probability of occurrence for the
class <SPAN CLASS="MATH"><IMG WIDTH="16" HEIGHT="25" ALIGN="MIDDLE" BORDER="0" SRC="img91.gif" ALT="$ q_k$"></SPAN>. The a-priori class probabilities for our phoneme classes
have been computed in section <A HREF="#sec:apriori">2.1</A>.<P><H3><A NAME="SECTION00023200000000000000">Experiment:</A></H3>
Now, we have modeled each vowel class with a Gaussian pdf (by
computing means and variances), we know the probability <SPAN CLASS="MATH"><IMG WIDTH="38" HEIGHT="28" ALIGN="MIDDLE" BORDER="0" SRC="img90.gif" ALT="$ P(q_k)$"></SPAN> of
each class in the imaginary language (sec. <A HREF="#sec:apriori">2.1</A>), which
we assume to be the correct a priori probabilities <!-- MATH $P(q_k|\ensuremath\boldsymbol{\Theta})$ --><SPAN CLASS="MATH"><IMG WIDTH="55" HEIGHT="28" ALIGN="MIDDLE" BORDER="0" SRC="img98.gif" ALT="$ P(q_k\vert\ensuremath\boldsymbol{\Theta})$"></SPAN> for
each class given our model <!-- MATH $\ensuremath\boldsymbol{\Theta}$ --><SPAN CLASS="MATH"><IMG WIDTH="16" HEIGHT="14" ALIGN="BOTTOM" BORDER="0" SRC="img61.gif" ALT="$ \ensuremath\boldsymbol{\Theta}$"></SPAN>. Further we assume that the speech
<SPAN CLASS="textit">features</SPAN> <!-- MATH $\ensuremath\mathbf{x}_i$ --><SPAN CLASS="MATH"><IMG WIDTH="16" HEIGHT="25" ALIGN="MIDDLE" BORDER="0" SRC="img44.gif" ALT="$ \ensuremath\mathbf{x}_i$"></SPAN> (as opposed to speech <EM>classes</EM> <SPAN CLASS="MATH"><IMG WIDTH="16" HEIGHT="25" ALIGN="MIDDLE" BORDER="0" SRC="img91.gif" ALT="$ q_k$"></SPAN>) are
equi-probable<A NAME="tex2html5" HREF="footnode.html#foot764"><SUP><SPAN CLASS="arabic">2</SPAN></SUP></A>.<P>What is the most probable class <SPAN CLASS="MATH"><IMG WIDTH="16" HEIGHT="25" ALIGN="MIDDLE" BORDER="0" SRC="img91.gif" ALT="$ q_k$"></SPAN> for each of the formant pairs
(features) <!-- MATH $\ensuremath\mathbf{x}_i=[F_1,F_2]^{\mathsf T}$ --><SPAN CLASS="MATH"><IMG WIDTH="87" HEIGHT="31" ALIGN="MIDDLE" BORDER="0" SRC="img112.gif" ALT="$ \ensuremath\mathbf{x}_i=[F_1,F_2]^{\mathsf T}$"></SPAN> given in the table below? Compute
the values of the functions <!-- MATH $f_k(\ensuremath\mathbf{x}_i)$ --><SPAN CLASS="MATH"><IMG WIDTH="41" HEIGHT="28" ALIGN="MIDDLE" BORDER="0" SRC="img113.gif" ALT="$ f_k(\ensuremath\mathbf{x}_i)$"></SPAN> for our model <!-- MATH $\ensuremath\boldsymbol{\Theta}$ --><SPAN CLASS="MATH"><IMG WIDTH="16" HEIGHT="14" ALIGN="BOTTOM" BORDER="0" SRC="img61.gif" ALT="$ \ensuremath\boldsymbol{\Theta}$"></SPAN> as the
right-hand side of eq. <A HREF="#eq:log-decision-rule">5</A>: <!-- MATH $f_k(\ensuremath\mathbf{x}_i) = \logp(\ensuremath\mathbf{x}_i|q_k,\ensuremath\boldsymbol{\Theta}) + \log P(q_k|\ensuremath\boldsymbol{\Theta})$ --><SPAN CLASS="MATH"><IMG WIDTH="236" HEIGHT="28" ALIGN="MIDDLE" BORDER="0" SRC="img114.gif" ALT="$ f_k(\ensuremath\mathbf{x}_i) = \logp(\ensuremath\mathbf{x}_i\vert q_k,\ensuremath\boldsymbol{\Theta}) + \log P(q_k\vert\ensuremath\boldsymbol{\Theta})$"></SPAN>, proportional to the log of the
posterior probability of <!-- MATH $\ensuremath\mathbf{x}_i$ --><SPAN CLASS="MATH"><IMG WIDTH="16" HEIGHT="25" ALIGN="MIDDLE" BORDER="0" SRC="img44.gif" ALT="$ \ensuremath\mathbf{x}_i$"></SPAN> belonging to class <SPAN CLASS="MATH"><IMG WIDTH="16" HEIGHT="25" ALIGN="MIDDLE" BORDER="0" SRC="img91.gif" ALT="$ q_k$"></SPAN>.<P><P><BR><DIV ALIGN="CENTER"> <TABLE CELLPADDING=3 BORDER="1"><TR><TD ALIGN="CENTER">i</TD><TD ALIGN="CENTER"><SMALL CLASS="SMALL"><!-- MATH $\ensuremath\mathbf{x}_i=[F_1,F_2]^{\mathsf T}$ --><SPAN CLASS="MATH"><IMG WIDTH="87" HEIGHT="31" ALIGN="MIDDLE" BORDER="0" SRC="img112.gif" ALT="$ \ensuremath\mathbf{x}_i=[F_1,F_2]^{\mathsf T}$"></SPAN> </SMALL></TD><TD ALIGN="CENTER"><SMALL CLASS="SMALL"><!-- MATH $f_{\text{/a/}}(\ensuremath\mathbf{x}_i)$ --><SPAN CLASS="MATH"><IMG WIDTH="52" HEIGHT="28" ALIGN="MIDDLE" BORDER="0" SRC="img115.gif" ALT="$ f_{\text{/a/}}(\ensuremath\mathbf{x}_i)$"></SPAN> </SMALL></TD><TD ALIGN="CENTER"><SMALL CLASS="SMALL"><!-- MATH $f_{\text{/e/}}(\ensuremath\mathbf{x}_i)$ --><SPAN CLASS="MATH"><IMG WIDTH="51" HEIGHT="28" ALIGN="MIDDLE" BORDER="0" SRC="img116.gif" ALT="$ f_{\text{/e/}}(\ensuremath\mathbf{x}_i)$"></SPAN> </SMALL></TD><TD ALIGN="CENTER"><SMALL CLASS="SMALL"><!-- MATH $f_{\text{/i/}}(\ensuremath\mathbf{x}_i)$ --><SPAN CLASS="MATH"><IMG WIDTH="49" HEIGHT="28" ALIGN="MIDDLE" BORDER="0" SRC="img117.gif" ALT="$ f_{\text{/i/}}(\ensuremath\mathbf{x}_i)$"></SPAN> </SMALL></TD><TD ALIGN="CENTER"><SMALL CLASS="SMALL"><!-- MATH $f_{\text{/o/}}(\ensuremath\mathbf{x}_i)$ --><SPAN CLASS="MATH"><IMG WIDTH="52" HEIGHT="28" ALIGN="MIDDLE" BORDER="0" SRC="img118.gif" ALT="$ f_{\text{/o/}}(\ensuremath\mathbf{x}_i)$"></SPAN> </SMALL></TD><TD ALIGN="CENTER"><SMALL CLASS="SMALL"><!-- MATH $f_{\text{/y/}}(\ensuremath\mathbf{x}_i)$ --><SPAN CLASS="MATH"><IMG WIDTH="52" HEIGHT="28" ALIGN="MIDDLE" BORDER="0" SRC="img119.gif" ALT="$ f_{\text{/y/}}(\ensuremath\mathbf{x}_i)$"></SPAN> </SMALL></TD><TD ALIGN="CENTER">Most prob. class <SPAN CLASS="MATH"><IMG WIDTH="16" HEIGHT="25" ALIGN="MIDDLE" BORDER="0" SRC="img91.gif" ALT="$ q_k$"></SPAN></TD></TR><TR><TD ALIGN="CENTER">1</TD><TD ALIGN="CENTER"><!-- MATH $[400,1800]^{\mathsf T}$ --><SPAN CLASS="MATH"><IMG WIDTH="74" HEIGHT="31" ALIGN="MIDDLE" BORDER="0" SRC="img120.gif" ALT="$ [400,1800]^{\mathsf T}$"></SPAN></TD><TD ALIGN="CENTER"> </TD><TD ALIGN="CENTER"> </TD><TD ALIGN="CENTER"> </TD><TD ALIGN="CENTER"> </TD><TD ALIGN="CENTER"> </TD><TD ALIGN="CENTER"> </TD></TR><TR><TD ALIGN="CENTER">2</TD><TD ALIGN="CENTER"><!-- MATH $[400,1000]^{\mathsf T}$ --><SPAN CLASS="MATH"><IMG WIDTH="74" HEIGHT="31" ALIGN="MIDDLE" BORDER="0" SRC="img121.gif" ALT="$ [400,1000]^{\mathsf T}$"></SPAN></TD><TD ALIGN="CENTER"> </TD><TD ALIGN="CENTER"> </TD><TD ALIGN="CENTER"> </TD><TD ALIGN="CENTER"> </TD><TD ALIGN="CENTER"> </TD><TD ALIGN="CENTER"> </TD></TR><TR><TD ALIGN="CENTER">3</TD><TD ALIGN="CENTER"><!-- MATH $[530,1000]^{\mathsf T}$ --><SPAN CLASS="MATH"><IMG WIDTH="74" HEIGHT="31" ALIGN="MIDDLE" BORDER="0" SRC="img122.gif" ALT="$ [530,1000]^{\mathsf T}$"></SPAN></TD><TD ALIGN="CENTER"> </TD><TD ALIGN="CENTER"> </TD><TD ALIGN="CENTER"> </TD><TD ALIGN="CENTER"> </TD><TD ALIGN="CENTER"> </TD><TD ALIGN="CENTER"> </TD></TR><TR><TD ALIGN="CENTER">4</TD><TD ALIGN="CENTER"><!-- MATH $[600,1300]^{\mathsf T}$ --><SPAN CLASS="MATH"><IMG WIDTH="74" HEIGHT="31" ALIGN="MIDDLE" BORDER="0" SRC="img123.gif" ALT="$ [600,1300]^{\mathsf T}$"></SPAN></TD><TD ALIGN="CENTER"> </TD><TD ALIGN="CENTER"> </TD><TD ALIGN="CENTER"> </TD><TD ALIGN="CENTER"> </TD><TD ALIGN="CENTER"> </TD><TD ALIGN="CENTER"> </TD></TR><TR><TD ALIGN="CENTER">5</TD><TD ALIGN="CENTER"><!-- MATH $[670,1300]^{\mathsf T}$ --><SPAN CLASS="MATH"><IMG WIDTH="74" HEIGHT="31" ALIGN="MIDDLE" BORDER="0" SRC="img124.gif" ALT="$ [670,1300]^{\mathsf T}$"></SPAN></TD><TD ALIGN="CENTER"> </TD><TD ALIGN="CENTER"> </TD><TD ALIGN="CENTER"> </TD><TD ALIGN="CENTER"> </TD><TD ALIGN="CENTER"> </TD><TD ALIGN="CENTER"> </TD></TR><TR><TD ALIGN="CENTER">6</TD><TD ALIGN="CENTER"><!-- MATH $[420,2500]^{\mathsf T}$ --><SPAN CLASS="MATH"><IMG WIDTH="74" HEIGHT="31" ALIGN="MIDDLE" BORDER="0" SRC="img125.gif" ALT="$ [420,2500]^{\mathsf T}$"></SPAN></TD><TD ALIGN="CENTER"> </TD><TD ALIGN="CENTER"> </TD><TD ALIGN="CENTER"> </TD><TD ALIGN="CENTER"> </TD><TD ALIGN="CENTER"> </TD><TD ALIGN="CENTER"> </TD></TR></TABLE></DIV>
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -