📄 catcycle.xmds
字号:
<?xml version="1.0"?><simulation> <!-- $Id: catcycle.xmds,v 1.1 2004/06/22 10:16:53 paultcochrane Exp $ --><!-- Copyright (C) 2000-2004 --><!-- --><!-- Code contributed by Greg Collecutt, Joseph Hope and Paul Cochrane --><!-- --><!-- This file is part of xmds. --><!-- --><!-- This program is free software; you can redistribute it and/or --><!-- modify it under the terms of the GNU General Public License --><!-- as published by the Free Software Foundation; either version 2 --><!-- of the License, or (at your option) any later version. --><!-- --><!-- This program is distributed in the hope that it will be useful, --><!-- but WITHOUT ANY WARRANTY; without even the implied warranty of --><!-- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the --><!-- GNU General Public License for more details. --><!-- --><!-- You should have received a copy of the GNU General Public License --><!-- along with this program; if not, write to the Free Software --><!-- Foundation, Inc., 59 Temple Place - Suite 330, Boston, --><!-- MA 02111-1307, USA. --> <name> catcycle </name> <!-- the name of the simulation --> <author> Paul Cochrane </author> <!-- the author of the simulation --> <description> <!-- a description of what the simulation is supposed to do --> An example of a catalytic cycle of reactions. Adapted for xmds from "Mathematica computer programs for physical chemistry", William H. Cropper, Springer Verlag (1998) Reactions are: A + X -> R + Y B + Y -> S + X where the intermediates X and Y are catalysts, so the reaction catalysed is A + B -> R + S Equations are: d[A]_dt = -k1[A][X] d[B]_dt = k2[B][Y] d[X]_dt = -k1[A][X] + k2[B][Y] d[Y]_dt = k1[A][X] - k2[B][Y] </description> <!-- Global system parameters and functionality --> <prop_dim> t </prop_dim> <!-- name of main propagation dim --> <error_check> yes </error_check> <!-- defaults to yes --> <use_wisdom> yes </use_wisdom> <!-- defaults to no --> <benchmark> yes </benchmark> <!-- defaults to no --> <use_prefs> yes </use_prefs> <!-- defaults to yes --> <!-- Global variables for the simulation --> <globals> <![CDATA[ // rate constants (in L/mol/s) const double k1 = 0.1; const double k2 = 1.0; // initial concentrations (in mol/L) const double Ao = 0.1; const double Bo = 0.1; const double Xo = 0.05; const double Yo = 0.1; ]]> </globals> <!-- Field to be integrated over --> <field> <name> main </name> <samples> 1 </samples> <!-- sample 1st point of dim? --> <vector> <name> main </name> <type> double </type> <!-- data type of vector --> <components> A B X Y </components> <!-- names of components --> <![CDATA[ A = Ao; B = Bo; X = Xo; Y = Yo; ]]> </vector> </field> <!-- The sequence of integrations to perform --> <sequence> <integrate> <algorithm> RK4IP </algorithm> <!-- RK4EX, RK4IP, SIEX, SIIP --> <interval> 1000 </interval> <!-- how far in main dim? --> <lattice> 100000 </lattice> <!-- no. points in main dim --> <samples> 1000 </samples> <!-- no. pts in output moment group --> <![CDATA[ dA_dt = -k1*A*X; dB_dt = -k2*B*Y; dX_dt = -k1*A*X + k2*B*Y; dY_dt = k1*A*X - k2*B*Y; ]]> </integrate> </sequence> <!-- The output to generate --> <output format="ascii"> <group> <sampling> <moments> Aout Bout Xout Yout </moments> <!-- names of moments --> <![CDATA[ Aout = A; Bout = B; Xout = X; Yout = Y; ]]> </sampling> </group> </output> </simulation>
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -