📄 krebs.xmds
字号:
<?xml version="1.0"?><simulation> <!-- $Id: krebs.xmds,v 1.1 2004/06/22 10:18:18 paultcochrane Exp $ --><!-- Copyright (C) 2000-2004 --><!-- --><!-- Code contributed by Greg Collecutt, Joseph Hope and Paul Cochrane --><!-- --><!-- This file is part of xmds. --><!-- --><!-- This program is free software; you can redistribute it and/or --><!-- modify it under the terms of the GNU General Public License --><!-- as published by the Free Software Foundation; either version 2 --><!-- of the License, or (at your option) any later version. --><!-- --><!-- This program is distributed in the hope that it will be useful, --><!-- but WITHOUT ANY WARRANTY; without even the implied warranty of --><!-- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the --><!-- GNU General Public License for more details. --><!-- --><!-- You should have received a copy of the GNU General Public License --><!-- along with this program; if not, write to the Free Software --><!-- Foundation, Inc., 59 Temple Place - Suite 330, Boston, --><!-- MA 02111-1307, USA. --> <name> krebs </name> <!-- the name of the simulation --> <author> Paul Cochrane </author> <!-- the author of the simulation --> <description> <!-- a description of what the simulation is supposed to do --> Simulation of a simplification of the Krebs cycle of biochemical reactions. Adapted for xmds from "Mathematica computer programs for physical chemistry", William H. Cropper, Springer Verlag (1998) This is a cyclic reaction scheme with the following reactions: A + R -> B + S B -> C R + C -> S + D D -> A with this reaction included which produces R at a constant rate from a reactant P whose concentration is large enough to be nearly constant. P -> R The overall reaction is R -> S With equations: d[A]_dt = k4[D] - k1[A][R] d[B]_dt = k1[A][R] - k2[B] d[C]_dt = k2[B] - k3[C][R] d[D]_dt = k3[C][R] - k4[D] d[R]_dt = k5 - k1[A][R] - k3[C][R] </description> <!-- Global system parameters and functionality --> <prop_dim> t </prop_dim> <!-- name of main propagation dim --> <error_check> yes </error_check> <!-- defaults to yes --> <use_wisdom> yes </use_wisdom> <!-- defaults to no --> <benchmark> yes </benchmark> <!-- defaults to no --> <use_prefs> yes </use_prefs> <!-- defaults to yes --> <!-- Global variables for the simulation --> <globals> <![CDATA[ // rate constants (in L/mol/s) const double k1 = 1.0; const double k2 = 0.1; const double k3 = 1.0; const double k4 = 0.1; const double k5 = 0.001; // initial concentrations (in mol/L) const double Ao = 0.1; const double Bo = 0.0; const double Co = 0.0; const double Do = 0.0; const double Ro = 0.0; ]]> </globals> <!-- Field to be integrated over --> <field> <name> main </name> <samples> 1 </samples> <!-- sample 1st point of dim? --> <vector> <name> main </name> <type> double </type> <!-- data type of vector --> <components> A B C D R </components> <!-- names of components --> <![CDATA[ A = Ao; B = Bo; C = Co; D = Do; R = Ro; ]]> </vector> </field> <!-- The sequence of integrations to perform --> <sequence> <integrate> <algorithm> RK4IP </algorithm> <!-- RK4EX, RK4IP, SIEX, SIIP --> <interval> 250 </interval> <!-- how far in main dim? --> <lattice> 100000 </lattice> <!-- no. points in main dim --> <samples> 1000 </samples> <!-- no. pts in output moment group --> <![CDATA[ dA_dt = k4*D - k1*A*R; dB_dt = k1*A*R - k2*B; dC_dt = k2*B - k3*C*R; dD_dt = k3*C*R - k4*D; dR_dt = k5 - k1*A*R - k3*C*R; ]]> </integrate> </sequence> <!-- The output to generate --> <output format="ascii"> <group> <sampling> <moments> Aout Bout Cout Dout Rout </moments> <!-- names of moments --> <![CDATA[ Aout = A; Bout = B; Cout = C; Dout = D; Rout = R; ]]> </sampling> </group> </output> </simulation>
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -