📄 brusselator.xmds
字号:
<?xml version="1.0"?><simulation> <!-- $Id: brusselator.xmds,v 1.2 2004/08/03 05:29:49 paultcochrane Exp $ --><!-- Copyright (C) 2000-2004 --><!-- --><!-- Code contributed by Greg Collecutt, Joseph Hope and Paul Cochrane --><!-- --><!-- This file is part of xmds. --><!-- --><!-- This program is free software; you can redistribute it and/or --><!-- modify it under the terms of the GNU General Public License --><!-- as published by the Free Software Foundation; either version 2 --><!-- of the License, or (at your option) any later version. --><!-- --><!-- This program is distributed in the hope that it will be useful, --><!-- but WITHOUT ANY WARRANTY; without even the implied warranty of --><!-- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the --><!-- GNU General Public License for more details. --><!-- --><!-- You should have received a copy of the GNU General Public License --><!-- along with this program; if not, write to the Free Software --><!-- Foundation, Inc., 59 Temple Place - Suite 330, Boston, --><!-- MA 02111-1307, USA. --> <name> brusselator </name> <!-- the name of the simulation --> <author> Paul Cochrane </author> <!-- the author of the simulation --> <description> <!-- a description of what the simulation is supposed to do --> Example simulation of the Brusslator model oscillating chemical kinetics equations. Calculates concentrations of components participating in the autocatalytic Brusselator model. The reaction scheme is A ----> X (1) B + X ----> R + Y (2) Y + 2 X ----> 3 X (3) X ----> S. (4) Rate equations for the intermediates X and Y are d[X]/dt = k1[A] - k2 [B] [X] + k3 [X]^2 [Y] - k4 [X] d[Y]/dt = k2 [B] [X] - k3 [X]^2 [Y], which are transformed in the program to d[X]/d(tau) = (k1[A] - k2 [B] [X] + k3 [X]^2 [Y] - k4 [X])/k4 d[Y]/d(tau) = (k2 [B] [X] - k3[X]^2 [Y])/k4, with tau = k4 t a unitless time-related variable. Adapted for xmds from "Mathematica computer programs for physical chemistry", William H. Cropper, Springer Verlag (1998) Equations are: d[X]_d(tau) = (k1[A] - k2[B][X] + k3[X]^2 [Y] - k4[X])/k4 d[Y]_d(tau) = (k2[B][X] - k3[X]^2 [Y])/k4 </description> <!-- Global system parameters and functionality --> <prop_dim> tau </prop_dim> <!-- name of main propagation dim --> <error_check> yes </error_check> <!-- defaults to yes --> <use_wisdom> yes </use_wisdom> <!-- defaults to no --> <benchmark> yes </benchmark> <!-- defaults to no --> <use_prefs> yes </use_prefs> <!-- defaults to yes --> <!-- Global variables for the simulation --> <globals> <![CDATA[ // rate constants // Units are s^-1 for first-order reactions, // L mol^-1 s^-1 for second-order reactions, and L^2 // mol^-2 s^-1 for third-order reactions. const double k1 = 0.025; const double k2 = 1.0; const double k3 = 1.0; const double k4 = 0.01; // the constant concentrations of the components A and B // in mol L^-1 const double a = 0.02; const double b = 0.02; // the initial concentrations of the components X and Y const double CX0 = 0.5; const double CY0 = 0.0; ]]> </globals> <!-- Field to be integrated over --> <field> <name> main </name> <samples> 1 </samples> <!-- sample 1st point of dim? --> <vector> <name> main </name> <type> double </type> <!-- data type of vector --> <components> CX CY </components> <!-- names of components --> <![CDATA[ CX = CX0; CY = CY0; ]]> </vector> </field> <!-- The sequence of integrations to perform --> <sequence> <integrate> <algorithm> RK4IP </algorithm> <!-- RK4EX, RK4IP, SIEX, SIIP --> <interval> 250 </interval> <!-- how far in main dim? --> <lattice> 5000 </lattice> <!-- no. points in main dim --> <samples> 500 </samples> <!-- no. pts in output moment group --> <![CDATA[ dCX_dtau = (k1*a - k2*b*CX + k3*CX*CX*CY - k4*CX)/k4; dCY_dtau = (k2*b*CX - k3*CX*CX*CY)/k4; ]]> </integrate> </sequence> <!-- The output to generate --> <output format="ascii"> <group> <sampling> <lattice> 500 </lattice> <!-- no. points to sample --> <moments> X Y </moments> <!-- names of moments --> <![CDATA[ X = CX; Y = CY; ]]> </sampling> </group> </output> </simulation>
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -