📄 cal_main.c
字号:
exit (-1); } for (i = 0; i < cd.point_count; i++) { M.el[i][0] = Yd[i] * cd.xw[i]; M.el[i][1] = Yd[i] * cd.yw[i]; M.el[i][2] = Yd[i]; M.el[i][3] = -Xd[i] * cd.xw[i]; M.el[i][4] = -Xd[i] * cd.yw[i]; b.el[i][0] = Xd[i]; } if (solve_system (M, a, b)) { fprintf (stderr, "cc compute U: unable to solve system Ma=b\n"); exit (-1); } U[0] = a.el[0][0]; U[1] = a.el[1][0]; U[2] = a.el[2][0]; U[3] = a.el[3][0]; U[4] = a.el[4][0]; freemat (M); freemat (a); freemat (b);}void cc_compute_Tx_and_Ty (){ int i, far_point; double Tx, Ty, Ty_squared, x, y, Sr, r1p, r2p, r4p, r5p, r1, r2, r4, r5, distance, far_distance; r1p = U[0]; r2p = U[1]; r4p = U[3]; r5p = U[4]; /* first find the square of the magnitude of Ty */ if ((fabs (r1p) < EPSILON) && (fabs (r2p) < EPSILON)) Ty_squared = 1 / (SQR (r4p) + SQR (r5p)); else if ((fabs (r4p) < EPSILON) && (fabs (r5p) < EPSILON)) Ty_squared = 1 / (SQR (r1p) + SQR (r2p)); else if ((fabs (r1p) < EPSILON) && (fabs (r4p) < EPSILON)) Ty_squared = 1 / (SQR (r2p) + SQR (r5p)); else if ((fabs (r2p) < EPSILON) && (fabs (r5p) < EPSILON)) Ty_squared = 1 / (SQR (r1p) + SQR (r4p)); else { Sr = SQR (r1p) + SQR (r2p) + SQR (r4p) + SQR (r5p); Ty_squared = (Sr - sqrt (SQR (Sr) - 4 * SQR (r1p * r5p - r4p * r2p))) / (2 * SQR (r1p * r5p - r4p * r2p)); } /* find a point that is far from the image center */ far_distance = 0; far_point = 0; for (i = 0; i < cd.point_count; i++) if ((distance = r_squared[i]) > far_distance) { far_point = i; far_distance = distance; } /* now find the sign for Ty */ /* start by assuming Ty > 0 */ Ty = sqrt (Ty_squared); r1 = U[0] * Ty; r2 = U[1] * Ty; Tx = U[2] * Ty; r4 = U[3] * Ty; r5 = U[4] * Ty; x = r1 * cd.xw[far_point] + r2 * cd.yw[far_point] + Tx; y = r4 * cd.xw[far_point] + r5 * cd.yw[far_point] + Ty; /* flip Ty if we guessed wrong */ if ((SIGNBIT (x) != SIGNBIT (Xd[far_point])) || (SIGNBIT (y) != SIGNBIT (Yd[far_point]))) Ty = -Ty; /* update the calibration constants */ cc.Tx = U[2] * Ty; cc.Ty = Ty;}void cc_compute_R (){ double r1, r2, r3, r4, r5, r6, r7, r8, r9; r1 = U[0] * cc.Ty; r2 = U[1] * cc.Ty; r3 = sqrt (1 - SQR (r1) - SQR (r2)); r4 = U[3] * cc.Ty; r5 = U[4] * cc.Ty; r6 = sqrt (1 - SQR (r4) - SQR (r5)); if (!SIGNBIT (r1 * r4 + r2 * r5)) r6 = -r6; /* use the outer product of the first two rows to get the last row */ r7 = r2 * r6 - r3 * r5; r8 = r3 * r4 - r1 * r6; r9 = r1 * r5 - r2 * r4; /* update the calibration constants */ cc.r1 = r1; cc.r2 = r2; cc.r3 = r3; cc.r4 = r4; cc.r5 = r5; cc.r6 = r6; cc.r7 = r7; cc.r8 = r8; cc.r9 = r9; /* fill in cc.Rx, cc.Ry and cc.Rz */ solve_RPY_transform ();}void cc_compute_approximate_f_and_Tz (){ int i; dmat M, a, b; M = newdmat (0, (cd.point_count - 1), 0, 1, &errno); if (errno) { fprintf (stderr, "cc compute apx: unable to allocate matrix M\n"); exit (-1); } a = newdmat (0, 1, 0, 0, &errno); if (errno) { fprintf (stderr, "cc compute apx: unable to allocate vector a\n"); exit (-1); } b = newdmat (0, (cd.point_count - 1), 0, 0, &errno); if (errno) { fprintf (stderr, "cc compute apx: unable to allocate vector b\n"); exit (-1); } for (i = 0; i < cd.point_count; i++) { M.el[i][0] = cc.r4 * cd.xw[i] + cc.r5 * cd.yw[i] + cc.Ty; M.el[i][1] = -Yd[i]; b.el[i][0] = (cc.r7 * cd.xw[i] + cc.r8 * cd.yw[i]) * Yd[i]; } if (solve_system (M, a, b)) { fprintf (stderr, "cc compute apx: unable to solve system Ma=b\n"); exit (-1); } /* update the calibration constants */ cc.f = a.el[0][0]; cc.Tz = a.el[1][0]; cc.kappa1 = 0.0; /* this is the assumption that our calculation was made under */ freemat (M); freemat (a); freemat (b);}/************************************************************************/void cc_compute_exact_f_and_Tz_error (m_ptr, n_ptr, params, err) integer *m_ptr; /* pointer to number of points to fit */ integer *n_ptr; /* pointer to number of parameters */ doublereal *params; /* vector of parameters */ doublereal *err; /* vector of error from data */{ int i; double f, Tz, kappa1, xc, yc, zc, Xu_1, Yu_1, Xu_2, Yu_2, distortion_factor; f = params[0]; Tz = params[1]; kappa1 = params[2]; for (i = 0; i < cd.point_count; i++) { /* convert from world coordinates to camera coordinates */ /* Note: zw is implicitly assumed to be zero for these (coplanar) calculations */ xc = cc.r1 * cd.xw[i] + cc.r2 * cd.yw[i] + cc.Tx; yc = cc.r4 * cd.xw[i] + cc.r5 * cd.yw[i] + cc.Ty; zc = cc.r7 * cd.xw[i] + cc.r8 * cd.yw[i] + Tz; /* convert from camera coordinates to undistorted sensor coordinates */ Xu_1 = f * xc / zc; Yu_1 = f * yc / zc; /* convert from distorted sensor coordinates to undistorted sensor coordinates */ distortion_factor = 1 + kappa1 * (SQR (Xd[i]) + SQR (Yd[i])); Xu_2 = Xd[i] * distortion_factor; Yu_2 = Yd[i] * distortion_factor; /* record the error in the undistorted sensor coordinates */ err[i] = hypot (Xu_1 - Xu_2, Yu_1 - Yu_2); }}void cc_compute_exact_f_and_Tz (){#define NPARAMS 3 int i; /* Parameters needed by MINPACK's lmdif() */ integer m = cd.point_count; integer n = NPARAMS; doublereal x[NPARAMS]; doublereal *fvec; doublereal ftol = REL_SENSOR_TOLERANCE_ftol; doublereal xtol = REL_PARAM_TOLERANCE_xtol; doublereal gtol = ORTHO_TOLERANCE_gtol; integer maxfev = MAXFEV; doublereal epsfcn = EPSFCN; doublereal diag[NPARAMS]; integer mode = MODE; doublereal factor = FACTOR; integer nprint = 0; integer info; integer nfev; doublereal *fjac; integer ldfjac = m; integer ipvt[NPARAMS]; doublereal qtf[NPARAMS]; doublereal wa1[NPARAMS]; doublereal wa2[NPARAMS]; doublereal wa3[NPARAMS]; doublereal *wa4; /* allocate some workspace */ if (( fvec = (doublereal *) calloc ((unsigned int) m, (unsigned int) sizeof(doublereal))) == NULL ) { fprintf(stderr,"calloc: Cannot allocate workspace fvec\n"); exit(-1); } if (( fjac = (doublereal *) calloc ((unsigned int) m*n, (unsigned int) sizeof(doublereal))) == NULL ) { fprintf(stderr,"calloc: Cannot allocate workspace fjac\n"); exit(-1); } if (( wa4 = (doublereal *) calloc ((unsigned int) m, (unsigned int) sizeof(doublereal))) == NULL ) { fprintf(stderr,"calloc: Cannot allocate workspace wa4\n"); exit(-1); } /* use the current calibration constants as an initial guess */ x[0] = cc.f; x[1] = cc.Tz; x[2] = cc.kappa1; /* define optional scale factors for the parameters */ if ( mode == 2 ) { for (i = 0; i < NPARAMS; i++) diag[i] = 1.0; /* some user-defined values */ } /* perform the optimization */ lmdif_ (cc_compute_exact_f_and_Tz_error, &m, &n, x, fvec, &ftol, &xtol, >ol, &maxfev, &epsfcn, diag, &mode, &factor, &nprint, &info, &nfev, fjac, &ldfjac, ipvt, qtf, wa1, wa2, wa3, wa4); /* update the calibration constants */ cc.f = x[0]; cc.Tz = x[1]; cc.kappa1 = x[2]; /* release allocated workspace */ free (fvec); free (fjac); free (wa4);#ifdef DEBUG /* print the number of function calls during iteration */ fprintf(stderr,"info: %d nfev: %d\n\n",info,nfev);#endif#undef NPARAMS}/************************************************************************/void cc_three_parm_optimization (){ int i; for (i = 0; i < cd.point_count; i++) if (cd.zw[i]) { fprintf (stderr, "error - coplanar calibration tried with data outside of Z plane\n\n"); exit (-1); } cc_compute_Xd_Yd_and_r_squared (); cc_compute_U (); cc_compute_Tx_and_Ty (); cc_compute_R (); cc_compute_approximate_f_and_Tz (); if (cc.f < 0) { /* try the other solution for the orthonormal matrix */ cc.r3 = -cc.r3; cc.r6 = -cc.r6; cc.r7 = -cc.r7; cc.r8 = -cc.r8; solve_RPY_transform (); cc_compute_approximate_f_and_Tz (); if (cc.f < 0) { fprintf (stderr, "error - possible handedness problem with data\n"); exit (-1); } } cc_compute_exact_f_and_Tz ();}/************************************************************************/void cc_remove_sensor_plane_distortion_from_Xd_and_Yd (){ int i; double Xu, Yu; for (i = 0; i < cd.point_count; i++) { distorted_to_undistorted_sensor_coord (Xd[i], Yd[i], &Xu, &Yu); Xd[i] = Xu; Yd[i] = Yu; r_squared[i] = SQR (Xu) + SQR (Yu); }}/************************************************************************/void cc_five_parm_optimization_with_late_distortion_removal_error (m_ptr, n_ptr, params, err) integer *m_ptr; /* pointer to number of points to fit */ integer *n_ptr; /* pointer to number of parameters */ doublereal *params; /* vector of parameters */ doublereal *err; /* vector of error from data */{ int i; double f, Tz, kappa1, xc, yc, zc, Xu_1, Yu_1, Xu_2, Yu_2, distortion_factor; /* in this routine radial lens distortion is only taken into account */ /* after the rotation and translation constants have been determined */ f = params[0]; Tz = params[1]; kappa1 = params[2]; cp.Cx = params[3]; cp.Cy = params[4]; cc_compute_Xd_Yd_and_r_squared (); cc_compute_U (); cc_compute_Tx_and_Ty (); cc_compute_R (); cc_compute_approximate_f_and_Tz ();
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -