📄 ausm.f
字号:
program ausm
c...Solves the Riemann problem for the Euler equations using first-order
c...upwind method based on LIOU-STEFFEN flux vector splitting.
c...This method is sometimes called AUSM.
c...Small amount of constant-coefficient artificial viscosity added
c...for stability on certain problems.
c...Number of grid points.
parameter(N = 50)
real*8 gamma, pl, pr, ul, ur, p, a, u, rul, rur, delta_t, delta_x
real*8 aa, bb, t, rhol, rhor, R, cu, cp, lambda, cfl, x
real*8 u1(0:N+2), u2(0:N+2), u3(0:N+2), retl, retr
real*8 f1(0:N+1), f2(0:N+1), f3(0:N+1), me(1:N+1), al, ar
real*8 av1(0:N+1), av2(0:N+1), av3(0:N+1)
parameter (gamma=1.4, R= 287.0, cflfac = 0.4)
parameter (cu = R/(gamma-1), cp = gamma*R/(gamma-1.))
open (unit=11,file='input.dat')
read(11,*) aa, bb, t
read(11,*) pl, rhol, ul
read(11,*) pr, rhor, ur
close(unit=11)
al = sqrt(gamma*pl/rhol)
ar = sqrt(gamma*pr/rhor)
delta_x = (bb-aa)/real(N)
me(1) = max(abs(ul+al),abs(ur+ar),abs(ul-al),abs(ur-ar))
delta_t = cflfac*delta_x/me(1)
itert = nint(t/delta_t)
lambda = delta_t/delta_x
cfl = lambda*me(1)
write(*,*) 'Final time requested = ', t
write(*,*) 'Delta_t = ', delta_t
write(*,*) 'Delta_x = ', delta_x
write(*,*) 'Lambda = ', lambda
write(*,*) 'Initial CFL number = ', cfl
write(*,*) '# iterations = ', itert
c...Convert primitive variables to conservative variables.
rul = rhol*ul
rur = rhor*ur
retl = .5*rul*ul + pl/(gamma-1.)
retr = .5*rur*ur + pr/(gamma-1.)
c...Construct the initial conditions for the Riemann problem.
do 30, i=0,N+2
x = aa + (bb-aa)*real(i-1)/real(N)
if(x.lt.0.) then
u1(i) = rhol
u2(i) = rul
u3(i) = retl
elseif(x.ge.0.) then
u1(i) = rhor
u2(i) = rur
u3(i) = retr
endif
30 continue
t = 0
C...Main loop.
do 100, j=1,itert
t = t + delta_t
cfl = 0.
C...Find conserative numerical fluxes.
do 40, i=0,N+1
call ls(u1(i),u2(i),u3(i),u1(i+1),u2(i+1),
* u3(i+1),f1(i),f2(i),f3(i))
if(i.gt.0) av1(i)=0.05*(u1(i+1)-2.*u1(i)+u1(i-1))
if(i.gt.0) av2(i)=0.05*(u2(i+1)-2.*u2(i)+u2(i-1))
if(i.gt.0) av3(i)=0.05*(u3(i+1)-2.*u3(i)+u3(i-1))
40 continue
C...Update conserved variables.
do 50, i=1,N+1
if(j.gt.2) then
u1(i) = u1(i) - lambda*(f1(i)-f1(i-1))
u2(i) = u2(i) - lambda*(f2(i)-f2(i-1))
u3(i) = u3(i) - lambda*(f3(i)-f3(i-1))
else
u1(i) = u1(i) - lambda*(f1(i)-f1(i-1)) + av1(i)
u2(i) = u2(i) - lambda*(f2(i)-f2(i-1)) + av2(i)
u3(i) = u3(i) - lambda*(f3(i)-f3(i-1)) + av3(i)
endif
if(u1(i).lt.0..or.u3(i).lt.0.) then
write(*,*) 'WARNING: Negative density or energy'
write(*,*) '# time steps = ', j
write(*,*) 'Grid point = ', i
write(*,*) 'x = ', aa + (bb-aa)*real(i-1)/real(N)
write(*,*) 'Density = ', u1(i)
write(*,*) 'Total energy per unit volume = ', u3(i)
stop
endif
u = u2(i)/u1(i)
p = (gamma-1.)*(u3(i) - .5*u2(i)*u2(i)/u1(i))
if(p.lt.0.) then
write(*,*) 'WARNING: Negative pressure'
write(*,*) '# time steps = ', j
write(*,*) 'Grid point = ', i
write(*,*) 'x = ', aa + (bb-aa)*real(i-1)/real(N)
write(*,*) 'Pressure = ', p
stop
endif
a = sqrt(gamma*p/u1(i))
me(i) = max(abs(u+a),abs(u-a))
cfl = max(cfl,lambda*me(i))
50 continue
if(cfl.gt.1.) then
write(*,*) 'WARNING: CFL condition violated'
write(*,*) '# time steps = ', j
write(*,*) 'Maximum CFL number = ', cfl
endif
100 continue
write(*,*) 'Calculation complete.'
write(*,*) 'Final time = ', t
write(*,*) 'Final CFL number = ' , cfl
open (unit = 13, file = 'pressure.out')
open (unit = 14, file = 'velocity.out')
open (unit = 15, file = 'sound.out')
open (unit = 16, file = 'density.out')
open (unit = 17, file = 'entropy.out')
open (unit = 18, file = 'mach.out')
open (unit = 19, file = 'massflux.out')
open (unit = 20, file = 'spectral.out')
c...Report results.
do 110, i=1,N+1
x = aa + (bb-aa)*real(i-1)/real(N)
p = (gamma-1.)*(u3(i) - .5*u2(i)*u2(i)/u1(i))
a = sqrt(gamma*p/u1(i))
u = u2(i)/u1(i)
write(13,*) x, p
write(14,*) x, u
write(15,*) x, a
write(16,*) x, u1(i)
write(17,*) x, cu*log(p)-cp*log(u1(i))
write(18,*) x, u/a
write(19,*) x, u2(i)
write(20,*) x, lambda*me(i)
110 continue
close(unit=13)
close(unit=14)
close(unit=15)
close(unit=16)
close(unit=17)
close(unit=18)
close(unit=19)
close(unit=20)
stop
end
subroutine ls(rl,rul,retl,rr,rur,retr,f1,f2,f3)
c...Liou-Steffen flux vector splitting.
real*8 gamma, rl, rul, retl, rr, rur, retr, f1, f2, f3
real*8 rhol, rhor, ul, ur, pl, pr, hl, hr, al, ar, Ml, Mr
real*8 Mp, pp, Mm, pm, Mpm
parameter(gamma=1.4)
c...Convert conservative variables to primitive variables.
rhol = rl
rhor = rr
ul = rul/rhol
ur = rur/rhor
pl = (gamma-1.)*(retl - .5*rul*rul/rhol)
pr = (gamma-1.)*(retr - .5*rur*rur/rhor)
hl = (retl+pl)/rhol
hr = (retr+pr)/rhor
al = sqrt(gamma*pl/rhol)
ar = sqrt(gamma*pr/rhor)
Ml = ul/al
Mr = ur/ar
c...Compute positive splitting of M and p.
if(Ml.le.-1.) then
Mp = 0.
pp = 0.
elseif(Ml.lt.1.) then
Mp = .25*(Ml+1.)*(Ml+1.)
pp = .5*(1.+Ml)*pl
c pp = .25*pl*(1.+Ml)*(1.+Ml)*(2.-Ml)
else
Mp = Ml
pp = pl
endif
c...Compute negative splitting of M and p.
if(Mr.le.-1.) then
Mm = Mr
pm = pr
elseif(Mr.lt.1.) then
Mm = -.25*(Mr-1.)*(Mr-1.)
pm = .5*(1.-Mr)*pr
c pm = .25*pr*(1.-Mr)*(1.-Mr)*(2.+Mr)
else
Mm = 0.
pm = 0.
endif
Mpm = Mp + Mm
c...Compute conserative numerical fluxes.
f1 = max(0.,Mpm)*rhol*al + min(0.,Mpm)*rhor*ar
f2 = max(0.,Mpm)*rul*al + min(0.,Mpm)*rur*ar + pp + pm
f3 = max(0.,Mpm)*rhol*hl*al + min(0.,Mpm)*rhor*hr*ar
return
end
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -