📄 ac3enc.c
字号:
/*
* The simplest AC3 encoder
* Copyright (c) 2000 Gerard Lantau.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#include <stdlib.h>
#include <stdio.h>
#include <netinet/in.h>
#include <math.h>
#include "avcodec.h"
#include "ac3enc.h"
#include "ac3tab.h"
//#define DEBUG
//#define DEBUG_BITALLOC
#define NDEBUG
#include <assert.h>
#define MDCT_NBITS 9
#define N (1 << MDCT_NBITS)
#define NB_BLOCKS 6 /* number of PCM blocks inside an AC3 frame */
/* new exponents are sent if their Norm 1 exceed this number */
#define EXP_DIFF_THRESHOLD 1000
/* exponent encoding strategy */
#define EXP_REUSE 0
#define EXP_NEW 1
#define EXP_D15 1
#define EXP_D25 2
#define EXP_D45 3
static void fft_init(int ln);
static void ac3_crc_init(void);
static inline INT16 fix15(float a)
{
int v;
v = (int)(a * (float)(1 << 15));
if (v < -32767)
v = -32767;
else if (v > 32767)
v = 32767;
return v;
}
static inline int calc_lowcomp1(int a, int b0, int b1)
{
if ((b0 + 256) == b1) {
a = 384 ;
} else if (b0 > b1) {
a = a - 64;
if (a < 0) a=0;
}
return a;
}
static inline int calc_lowcomp(int a, int b0, int b1, int bin)
{
if (bin < 7) {
if ((b0 + 256) == b1) {
a = 384 ;
} else if (b0 > b1) {
a = a - 64;
if (a < 0) a=0;
}
} else if (bin < 20) {
if ((b0 + 256) == b1) {
a = 320 ;
} else if (b0 > b1) {
a= a - 64;
if (a < 0) a=0;
}
} else {
a = a - 128;
if (a < 0) a=0;
}
return a;
}
/* AC3 bit allocation. The algorithm is the one described in the AC3
spec with some optimizations because of our simplified encoding
assumptions. */
void parametric_bit_allocation(AC3EncodeContext *s, UINT8 *bap,
INT8 *exp, int start, int end,
int snroffset, int fgain)
{
int bin,i,j,k,end1,v,v1,bndstrt,bndend,lowcomp,begin;
int fastleak,slowleak,address,tmp;
INT16 psd[256]; /* scaled exponents */
INT16 bndpsd[50]; /* interpolated exponents */
INT16 excite[50]; /* excitation */
INT16 mask[50]; /* masking value */
/* exponent mapping to PSD */
for(bin=start;bin<end;bin++) {
psd[bin]=(3072 - (exp[bin] << 7));
}
/* PSD integration */
j=start;
k=masktab[start];
do {
v=psd[j];
j++;
end1=bndtab[k+1];
if (end1 > end) end1=end;
for(i=j;i<end1;i++) {
int c,adr;
/* logadd */
v1=psd[j];
c=v-v1;
if (c >= 0) {
adr=c >> 1;
if (adr > 255) adr=255;
v=v + latab[adr];
} else {
adr=(-c) >> 1;
if (adr > 255) adr=255;
v=v1 + latab[adr];
}
j++;
}
bndpsd[k]=v;
k++;
} while (end > bndtab[k]);
/* excitation function */
bndstrt = masktab[start];
bndend = masktab[end-1] + 1;
lowcomp = 0;
lowcomp = calc_lowcomp1(lowcomp, bndpsd[0], bndpsd[1]) ;
excite[0] = bndpsd[0] - fgain - lowcomp ;
lowcomp = calc_lowcomp1(lowcomp, bndpsd[1], bndpsd[2]) ;
excite[1] = bndpsd[1] - fgain - lowcomp ;
begin = 7 ;
for (bin = 2; bin < 7; bin++) {
lowcomp = calc_lowcomp1(lowcomp, bndpsd[bin], bndpsd[bin+1]) ;
fastleak = bndpsd[bin] - fgain ;
slowleak = bndpsd[bin] - s->sgain ;
excite[bin] = fastleak - lowcomp ;
if (bndpsd[bin] <= bndpsd[bin+1]) {
begin = bin + 1 ;
break ;
}
}
end1=bndend;
if (end1 > 22) end1=22;
for (bin = begin; bin < end1; bin++) {
lowcomp = calc_lowcomp(lowcomp, bndpsd[bin], bndpsd[bin+1], bin) ;
fastleak -= s->fdecay ;
v = bndpsd[bin] - fgain;
if (fastleak < v) fastleak = v;
slowleak -= s->sdecay ;
v = bndpsd[bin] - s->sgain;
if (slowleak < v) slowleak = v;
v=fastleak - lowcomp;
if (slowleak > v) v=slowleak;
excite[bin] = v;
}
for (bin = 22; bin < bndend; bin++) {
fastleak -= s->fdecay ;
v = bndpsd[bin] - fgain;
if (fastleak < v) fastleak = v;
slowleak -= s->sdecay ;
v = bndpsd[bin] - s->sgain;
if (slowleak < v) slowleak = v;
v=fastleak;
if (slowleak > v) v = slowleak;
excite[bin] = v;
}
/* compute masking curve */
for (bin = bndstrt; bin < bndend; bin++) {
v1 = excite[bin];
tmp = s->dbknee - bndpsd[bin];
if (tmp > 0) {
v1 += tmp >> 2;
}
v=hth[bin >> s->halfratecod][s->fscod];
if (v1 > v) v=v1;
mask[bin] = v;
}
/* compute bit allocation */
i = start ;
j = masktab[start] ;
do {
v=mask[j];
v -= snroffset ;
v -= s->floor ;
if (v < 0) v = 0;
v &= 0x1fe0 ;
v += s->floor ;
end1=bndtab[j] + bndsz[j];
if (end1 > end) end1=end;
for (k = i; k < end1; k++) {
address = (psd[i] - v) >> 5 ;
if (address < 0) address=0;
else if (address > 63) address=63;
bap[i] = baptab[address];
i++;
}
} while (end > bndtab[j++]) ;
}
typedef struct IComplex {
short re,im;
} IComplex;
static void fft_init(int ln)
{
int i, j, m, n;
float alpha;
n = 1 << ln;
for(i=0;i<(n/2);i++) {
alpha = 2 * M_PI * (float)i / (float)n;
costab[i] = fix15(cos(alpha));
sintab[i] = fix15(sin(alpha));
}
for(i=0;i<n;i++) {
m=0;
for(j=0;j<ln;j++) {
m |= ((i >> j) & 1) << (ln-j-1);
}
fft_rev[i]=m;
}
}
/* butter fly op */
#define BF(pre, pim, qre, qim, pre1, pim1, qre1, qim1) \
{\
int ax, ay, bx, by;\
bx=pre1;\
by=pim1;\
ax=qre1;\
ay=qim1;\
pre = (bx + ax) >> 1;\
pim = (by + ay) >> 1;\
qre = (bx - ax) >> 1;\
qim = (by - ay) >> 1;\
}
#define MUL16(a,b) ((a) * (b))
#define CMUL(pre, pim, are, aim, bre, bim) \
{\
pre = (MUL16(are, bre) - MUL16(aim, bim)) >> 15;\
pim = (MUL16(are, bim) + MUL16(bre, aim)) >> 15;\
}
/* do a 2^n point complex fft on 2^ln points. */
static void fft(IComplex *z, int ln)
{
int j, l, np, np2;
int nblocks, nloops;
register IComplex *p,*q;
int tmp_re, tmp_im;
np = 1 << ln;
/* reverse */
for(j=0;j<np;j++) {
int k;
IComplex tmp;
k = fft_rev[j];
if (k < j) {
tmp = z[k];
z[k] = z[j];
z[j] = tmp;
}
}
/* pass 0 */
p=&z[0];
j=(np >> 1);
do {
BF(p[0].re, p[0].im, p[1].re, p[1].im,
p[0].re, p[0].im, p[1].re, p[1].im);
p+=2;
} while (--j != 0);
/* pass 1 */
p=&z[0];
j=np >> 2;
do {
BF(p[0].re, p[0].im, p[2].re, p[2].im,
p[0].re, p[0].im, p[2].re, p[2].im);
BF(p[1].re, p[1].im, p[3].re, p[3].im,
p[1].re, p[1].im, p[3].im, -p[3].re);
p+=4;
} while (--j != 0);
/* pass 2 .. ln-1 */
nblocks = np >> 3;
nloops = 1 << 2;
np2 = np >> 1;
do {
p = z;
q = z + nloops;
for (j = 0; j < nblocks; ++j) {
BF(p->re, p->im, q->re, q->im,
p->re, p->im, q->re, q->im);
p++;
q++;
for(l = nblocks; l < np2; l += nblocks) {
CMUL(tmp_re, tmp_im, costab[l], -sintab[l], q->re, q->im);
BF(p->re, p->im, q->re, q->im,
p->re, p->im, tmp_re, tmp_im);
p++;
q++;
}
p += nloops;
q += nloops;
}
nblocks = nblocks >> 1;
nloops = nloops << 1;
} while (nblocks != 0);
}
/* do a 512 point mdct */
static void mdct512(INT32 *out, INT16 *in)
{
int i, re, im, re1, im1;
INT16 rot[N];
IComplex x[N/4];
/* shift to simplify computations */
for(i=0;i<N/4;i++)
rot[i] = -in[i + 3*N/4];
for(i=N/4;i<N;i++)
rot[i] = in[i - N/4];
/* pre rotation */
for(i=0;i<N/4;i++) {
re = ((int)rot[2*i] - (int)rot[N-1-2*i]) >> 1;
im = -((int)rot[N/2+2*i] - (int)rot[N/2-1-2*i]) >> 1;
CMUL(x[i].re, x[i].im, re, im, -xcos1[i], xsin1[i]);
}
fft(x, MDCT_NBITS - 2);
/* post rotation */
for(i=0;i<N/4;i++) {
re = x[i].re;
im = x[i].im;
CMUL(re1, im1, re, im, xsin1[i], xcos1[i]);
out[2*i] = im1;
out[N/2-1-2*i] = re1;
}
}
/* XXX: use another norm ? */
static int calc_exp_diff(UINT8 *exp1, UINT8 *exp2, int n)
{
int sum, i;
sum = 0;
for(i=0;i<n;i++) {
sum += abs(exp1[i] - exp2[i]);
}
return sum;
}
static void compute_exp_strategy(UINT8 exp_strategy[NB_BLOCKS][AC3_MAX_CHANNELS],
UINT8 exp[NB_BLOCKS][AC3_MAX_CHANNELS][N/2],
int ch)
{
int i, j;
int exp_diff;
/* estimate if the exponent variation & decide if they should be
reused in the next frame */
exp_strategy[0][ch] = EXP_NEW;
for(i=1;i<NB_BLOCKS;i++) {
exp_diff = calc_exp_diff(exp[i][ch], exp[i-1][ch], N/2);
#ifdef DEBUG
printf("exp_diff=%d\n", exp_diff);
#endif
if (exp_diff > EXP_DIFF_THRESHOLD)
exp_strategy[i][ch] = EXP_NEW;
else
exp_strategy[i][ch] = EXP_REUSE;
}
/* now select the encoding strategy type : if exponents are often
recoded, we use a coarse encoding */
i = 0;
while (i < NB_BLOCKS) {
j = i + 1;
while (j < NB_BLOCKS && exp_strategy[j][ch] == EXP_REUSE)
j++;
switch(j - i) {
case 1:
exp_strategy[i][ch] = EXP_D45;
break;
case 2:
case 3:
exp_strategy[i][ch] = EXP_D25;
break;
default:
exp_strategy[i][ch] = EXP_D15;
break;
}
i = j;
}
}
/* set exp[i] to min(exp[i], exp1[i]) */
static void exponent_min(UINT8 exp[N/2], UINT8 exp1[N/2], int n)
{
int i;
for(i=0;i<n;i++) {
if (exp1[i] < exp[i])
exp[i] = exp1[i];
}
}
/* update the exponents so that they are the ones the decoder will
decode. Return the number of bits used to code the exponents */
static int encode_exp(UINT8 encoded_exp[N/2],
UINT8 exp[N/2],
int nb_exps,
int exp_strategy)
{
int group_size, nb_groups, i, j, k, recurse, exp_min, delta;
UINT8 exp1[N/2];
switch(exp_strategy) {
case EXP_D15:
group_size = 1;
break;
case EXP_D25:
group_size = 2;
break;
default:
case EXP_D45:
group_size = 4;
break;
}
nb_groups = ((nb_exps + (group_size * 3) - 4) / (3 * group_size)) * 3;
/* for each group, compute the minimum exponent */
exp1[0] = exp[0]; /* DC exponent is handled separately */
k = 1;
for(i=1;i<=nb_groups;i++) {
exp_min = exp[k];
assert(exp_min >= 0 && exp_min <= 24);
for(j=1;j<group_size;j++) {
if (exp[k+j] < exp_min)
exp_min = exp[k+j];
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -