📄 hal_io.h
字号:
#ifndef CYGONCE_HAL_IO_H#define CYGONCE_HAL_IO_H//=============================================================================//// hal_io.h//// HAL device IO register support.////=============================================================================//####COPYRIGHTBEGIN####// // ------------------------------------------- // The contents of this file are subject to the Red Hat eCos Public License // Version 1.1 (the "License"); you may not use this file except in // compliance with the License. You may obtain a copy of the License at // http://www.redhat.com/ // // Software distributed under the License is distributed on an "AS IS" // basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See the // License for the specific language governing rights and limitations under // the License. // // The Original Code is eCos - Embedded Configurable Operating System, // released September 30, 1998. // // The Initial Developer of the Original Code is Red Hat. // Portions created by Red Hat are // Copyright (C) 1998, 1999, 2000 Red Hat, Inc. // All Rights Reserved. // ------------------------------------------- // //####COPYRIGHTEND####//=============================================================================//#####DESCRIPTIONBEGIN####//// Author(s): nickg, gthomas// Contributors: nickg, gthomas// Date: 1998-09-11// Purpose: Define IO register support// Description: The macros defined here provide the HAL APIs for handling// device IO control registers.// // Usage:// #include <cyg/hal/hal_io.h>// ...// ////####DESCRIPTIONEND####////=============================================================================#include <pkgconf/system.h>#include <cyg/infra/cyg_type.h>#include <cyg/hal/basetype.h>//-----------------------------------------------------------------------------// IO Register address.// This type is for recording the address of an IO register.typedef volatile CYG_ADDRWORD HAL_IO_REGISTER;//-----------------------------------------------------------------------------// BYTE Register access.// Individual and vectorized access to 8 bit registers.// Little-endian version#if (CYG_BYTEORDER == CYG_LSBFIRST)#define HAL_READ_UINT8( _register_, _value_ ) \ ((_value_) = *((volatile CYG_BYTE *)(_register_)))#define HAL_WRITE_UINT8( _register_, _value_ ) \ (*((volatile CYG_BYTE *)(_register_)) = (_value_))#define HAL_READ_UINT8_VECTOR( _register_, _buf_, _count_, _step_ ) \ CYG_MACRO_START \ cyg_count32 _i_,_j_; \ for( _i_ = 0, _j_ = 0; _i_ < (_count_); _i_++, _j_ += (_step_)) \ (_buf_)[_i_] = ((volatile CYG_BYTE *)(_register_))[_j_]; \ CYG_MACRO_END#define HAL_WRITE_UINT8_VECTOR( _register_, _buf_, _count_, _step_ ) \ CYG_MACRO_START \ cyg_count32 _i_,_j_; \ for( _i_ = 0, _j_ = 0; _i_ < (_count_); _i_++, _j_ += (_step_)) \ ((volatile CYG_BYTE *)(_register_))[_j_] = (_buf_)[_i_]; \ CYG_MACRO_END#else // Big-endian version#define HAL_READ_UINT8( _register_, _value_ ) \ ((_value_) = *((volatile CYG_BYTE *)((CYG_ADDRWORD)(_register_)^3)))#define HAL_WRITE_UINT8( _register_, _value_ ) \ (*((volatile CYG_BYTE *)((CYG_ADDRWORD)(_register_)^3)) = (_value_))#define HAL_READ_UINT8_VECTOR( _register_, _buf_, _count_, _step_ ) \ CYG_MACRO_START \ cyg_count32 _i_,_j_; \ volatile CYG_BYTE* _r_ = ((CYG_ADDRWORD)(_register_)^3); \ for( _i_ = 0, _j_ = 0; _i_ < (_count_); _i_++, _j_ += (_step_)) \ (_buf_)[_i_] = _r_[_j_]; \ CYG_MACRO_END#define HAL_WRITE_UINT8_VECTOR( _register_, _buf_, _count_, _step_ ) \ CYG_MACRO_START \ cyg_count32 _i_,_j_; \ volatile CYG_BYTE* _r_ = ((CYG_ADDRWORD)(_register_)^3); \ for( _i_ = 0, _j_ = 0; _i_ < (_count_); _i_++, _j_ += (_step_)) \ _r_[_j_] = (_buf_)[_i_]; \ CYG_MACRO_END#endif // Big-endian//-----------------------------------------------------------------------------// 16 bit access.// Individual and vectorized access to 16 bit registers. // Little-endian version#if (CYG_BYTEORDER == CYG_LSBFIRST)#define HAL_READ_UINT16( _register_, _value_ ) \ ((_value_) = *((volatile CYG_WORD16 *)(_register_)))#define HAL_WRITE_UINT16( _register_, _value_ ) \ (*((volatile CYG_WORD16 *)(_register_)) = (_value_))#define HAL_READ_UINT16_VECTOR( _register_, _buf_, _count_, _step_ ) \ CYG_MACRO_START \ cyg_count32 _i_,_j_; \ for( _i_ = 0, _j_ = 0; _i_ < (_count_); _i_++, _j_ += (_step_)) \ (_buf_)[_i_] = ((volatile CYG_WORD16 *)(_register_))[_j_]; \ CYG_MACRO_END#define HAL_WRITE_UINT16_VECTOR( _register_, _buf_, _count_, _step_ ) \ CYG_MACRO_START \ cyg_count32 _i_,_j_; \ for( _i_ = 0, _j_ = 0; _i_ < (_count_); _i_++, _j_ += (_step_)) \ ((volatile CYG_WORD16 *)(_register_))[_j_] = (_buf_)[_i_]; \ CYG_MACRO_END#else // Big-endian version#define HAL_READ_UINT16( _register_, _value_ ) \ ((_value_) = *((volatile CYG_WORD16 *)((CYG_ADDRWORD)(_register_)^3)))#define HAL_WRITE_UINT16( _register_, _value_ ) \ (*((volatile CYG_WORD16 *)((CYG_ADDRWORD)(_register_)^3)) = (_value_))#define HAL_READ_UINT16_VECTOR( _register_, _buf_, _count_, _step_ ) \ CYG_MACRO_START \ cyg_count32 _i_,_j_; \ volatile CYG_WORD16* _r_ = ((CYG_ADDRWORD)(_register_)^3); \ for( _i_ = 0, _j_ = 0; _i_ < (_count_); _i_++, _j_ += (_step_)) \ (_buf_)[_i_] = _r_[_j_]; \ CYG_MACRO_END#define HAL_WRITE_UINT16_VECTOR( _register_, _buf_, _count_, _step_ ) \ CYG_MACRO_START \ cyg_count32 _i_,_j_; \ volatile CYG_WORD16* _r_ = ((CYG_ADDRWORD)(_register_)^3); \ for( _i_ = 0, _j_ = 0; _i_ < (_count_); _i_++, _j_ += (_step_)) \ _r_[_j_] = (_buf_)[_i_]; \ CYG_MACRO_END#endif // Big-endian//-----------------------------------------------------------------------------// 32 bit access.// Individual and vectorized access to 32 bit registers.// Note: same macros for little- and big-endian systems. #define HAL_READ_UINT32( _register_, _value_ ) \ ((_value_) = *((volatile CYG_WORD32 *)(_register_)))#define HAL_WRITE_UINT32( _register_, _value_ ) \ (*((volatile CYG_WORD32 *)(_register_)) = (_value_))#define HAL_READ_UINT32_VECTOR( _register_, _buf_, _count_, _step_ ) \ CYG_MACRO_START \ cyg_count32 _i_,_j_; \ for( _i_ = 0, _j_ = 0; _i_ < (_count_); _i_++, _j_ += (_step_)) \ (_buf_)[_i_] = ((volatile CYG_WORD32 *)(_register_))[_j_]; \ CYG_MACRO_END#define HAL_WRITE_UINT32_VECTOR( _register_, _buf_, _count_, _step_ ) \ CYG_MACRO_START \ cyg_count32 _i_,_j_; \ for( _i_ = 0, _j_ = 0; _i_ < (_count_); _i_++, _j_ += (_step_)) \ ((volatile CYG_WORD32 *)(_register_))[_j_] = (_buf_)[_i_]; \ CYG_MACRO_END// Enforce a flow "barrier" to prevent optimizing compiler from reordering // operations.#define HAL_IO_BARRIER()//-----------------------------------------------------------------------------// Include plf_io.h for platforms that define it.// FIXME: It should be possible to handle this better with CDL; define// CYGBLD_HAL_PLATFORM_IO or similar where appropriate.#ifdef CYGPKG_HAL_ARM_EBSA285#include <cyg/hal/plf_io.h>#endif//-----------------------------------------------------------------------------#endif // ifndef CYGONCE_HAL_IO_H// End of hal_io.h
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -