📄 plf_io.h
字号:
#ifndef CYGONCE_PLF_IO_H#define CYGONCE_PLF_IO_H//=============================================================================//// plf_io.h//// Platform specific IO support////=============================================================================//####COPYRIGHTBEGIN####// // ------------------------------------------- // The contents of this file are subject to the Red Hat eCos Public License // Version 1.1 (the "License"); you may not use this file except in // compliance with the License. You may obtain a copy of the License at // http://www.redhat.com/ // // Software distributed under the License is distributed on an "AS IS" // basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See the // License for the specific language governing rights and limitations under // the License. // // The Original Code is eCos - Embedded Configurable Operating System, // released September 30, 1998. // // The Initial Developer of the Original Code is Red Hat. // Portions created by Red Hat are // Copyright (C) 1998, 1999, 2000 Red Hat, Inc. // All Rights Reserved. // ------------------------------------------- // //####COPYRIGHTEND####//=============================================================================//#####DESCRIPTIONBEGIN####//// Author(s): hmt, jskov, nickg// Contributors: hmt, jskov, nickg// Date: 1999-08-09// Purpose: VRC4373 PCI IO support macros// Description: // Usage: #include <cyg/hal/plf_io.h>//// Note: Based on information in // "VRC4373 System Controller Data Sheet"//####DESCRIPTIONEND####////=============================================================================#include <pkgconf/hal.h>#include <cyg/hal/hal_io.h> // IO macros#include <cyg/hal/hal_intr.h> // Interrupt vectors//-----------------------------------------------------------------------------// PCI access registers#define HAL_PCI_ADDRESS_WINDOW_1 0xAF000014#define HAL_PCI_ADDRESS_WINDOW_2 0xAF000018#define HAL_PCI_IO_WINDOW 0xAF000024#define HAL_PCI_CONFIG_SPACE_DATA 0xAF000028#define HAL_PCI_CONFIG_SPACE_ADDR 0xAF00002C#define HAL_PCI_ENABLE_REG 0xAF000074//-----------------------------------------------------------------------------// Mappings for PCI memory and IO spaces// This is where the PCI spaces are mapped in the CPU's (virtual)// address space.#define HAL_PCI_PHYSICAL_MEMORY_BASE 0xC0000000#define HAL_PCI_PHYSICAL_IO_BASE 0xAC000000//-----------------------------------------------------------------------------// Initialize the PCI bus.// This has actually already been done by the HAL.#define HAL_PCI_INIT()// Compute address necessary to access PCI config space for the given// bus and device.#define HAL_PCI_CONFIG_ADDRESS( __bus, __devfn, __offset ) \ ({ \ cyg_uint32 __addr; \ cyg_uint32 __dev = CYG_PCI_DEV_GET_DEV(__devfn); \ if (0 == __bus) { \ __addr = (1 << (__dev+16)); \ } else { \ /* We need better info about how to form type 1 addresses */ \ __addr = 0x800000000 | (__bus << 16) | (__dev << 11); \ } \ __addr |= CYG_PCI_DEV_GET_FN(__devfn) << 8; \ __addr |= (__offset)&~3; \ __addr; \ })// The following function allows us to read locations in the PCI config// space that we are not sure contains a valid device. Support in platform.S// catches and fixes any bus errors caused.externC CYG_WORD32 hal_pci_config_read(CYG_ADDRESS addr);#define HAL_PCI_CONFIG_READ( __addr, __val ) __val = hal_pci_config_read(__addr)// Read a value from the PCI configuration space of the appropriate// size at an address composed from the bus, devfn and offset.// We can only make 32 bit accesses to the PCI config data register, hence// all the shifing and masking in these macros.// Note that we may only use HAL_PCI_CONFIG_READ() here.#define HAL_PCI_CFG_READ_UINT8( __bus, __devfn, __offset, __val ) \CYG_MACRO_START \ CYG_WORD32 _val_; \ CYG_WORD32 _offset_ = __offset & 3; \ HAL_WRITE_UINT32(HAL_PCI_CONFIG_SPACE_ADDR, \ HAL_PCI_CONFIG_ADDRESS(__bus, __devfn, __offset)); \ HAL_PCI_CONFIG_READ(HAL_PCI_CONFIG_SPACE_DATA, _val_); \ __val = (CYG_BYTE)((_val_>>(_offset_*8))&0xFF); \CYG_MACRO_END#define HAL_PCI_CFG_READ_UINT16( __bus, __devfn, __offset, __val ) \CYG_MACRO_START \ CYG_WORD32 _val_; \ CYG_WORD32 _offset_ = __offset & 2; \ HAL_WRITE_UINT32(HAL_PCI_CONFIG_SPACE_ADDR, \ HAL_PCI_CONFIG_ADDRESS(__bus, __devfn, __offset)); \ HAL_PCI_CONFIG_READ(HAL_PCI_CONFIG_SPACE_DATA, _val_); \ __val = (CYG_WORD16)((_val_>>(_offset_*8))&0xFFFF); \CYG_MACRO_END#define HAL_PCI_CFG_READ_UINT32( __bus, __devfn, __offset, __val ) \CYG_MACRO_START \ CYG_WORD32 _val_; \ HAL_WRITE_UINT32(HAL_PCI_CONFIG_SPACE_ADDR, \ HAL_PCI_CONFIG_ADDRESS(__bus, __devfn, __offset)); \ HAL_PCI_CONFIG_READ(HAL_PCI_CONFIG_SPACE_DATA, _val_); \ __val = (CYG_WORD32)_val_; \CYG_MACRO_END// Write a value to the PCI configuration space of the appropriate// size at an address composed from the bus, devfn and offset.// We can only make 32 bit accesses to the PCI config data register, hence// all the shifing and masking in these macros.// Note that we do not need to use HAL_PCI_CONFIG_READ() here since we// should not be writing to config space locations that we do not already// know are valid.#define HAL_PCI_CFG_WRITE_UINT8( __bus, __devfn, __offset, __val ) \CYG_MACRO_START \ CYG_WORD32 _val_; \ CYG_WORD32 _offset_ = __offset & 3; \ HAL_WRITE_UINT32(HAL_PCI_CONFIG_SPACE_ADDR, \ HAL_PCI_CONFIG_ADDRESS(__bus, __devfn, __offset)); \ HAL_READ_UINT32(HAL_PCI_CONFIG_SPACE_DATA, _val_); \ _val_ &= ~(0xFF<<(_offset_*8)); \ _val_ |= (__val)<<(_offset_*8); \ HAL_WRITE_UINT32(HAL_PCI_CONFIG_SPACE_DATA, _val_); \CYG_MACRO_END#define HAL_PCI_CFG_WRITE_UINT16( __bus, __devfn, __offset, __val ) \CYG_MACRO_START \ CYG_WORD32 _val_; \ CYG_WORD32 _offset_ = __offset & 2; \ HAL_WRITE_UINT32(HAL_PCI_CONFIG_SPACE_ADDR, \ HAL_PCI_CONFIG_ADDRESS(__bus, __devfn, __offset)); \ HAL_READ_UINT32(HAL_PCI_CONFIG_SPACE_DATA, _val_); \ _val_ &= ~(0xFFFF<<(_offset_*8)); \ _val_ |= (__val)<<(_offset_*8); \ HAL_WRITE_UINT32(HAL_PCI_CONFIG_SPACE_DATA, _val_); \CYG_MACRO_END#define HAL_PCI_CFG_WRITE_UINT32( __bus, __devfn, __offset, __val ) \CYG_MACRO_START \ HAL_WRITE_UINT32(HAL_PCI_CONFIG_SPACE_ADDR, \ HAL_PCI_CONFIG_ADDRESS(__bus, __devfn, __offset)); \ HAL_WRITE_UINT32(HAL_PCI_CONFIG_SPACE_DATA, __val); \CYG_MACRO_END//-----------------------------------------------------------------------------// Resources// Map PCI device resources starting from these addresses in PCI space.#define HAL_PCI_ALLOC_BASE_MEMORY 0#define HAL_PCI_ALLOC_BASE_IO 0// Translate the PCI interrupt requested by the device (INTA#, INTB#,// INTC# or INTD#) to the associated CPU interrupt (i.e., HAL vector).// We don't actually know what the mappings are at present for this// board. The following is therefore just a temporary guess until// we can find out.#define HAL_PCI_TRANSLATE_INTERRUPT( __bus, __devfn, __vec, __valid) \ CYG_MACRO_START \ cyg_uint8 __req; \ HAL_PCI_CFG_READ_UINT8(__bus, __devfn, CYG_PCI_CFG_INT_PIN, __req); \ if (0 != __req) { \ CYG_ADDRWORD __translation[4] = { \ CYGNUM_HAL_INTERRUPT_PCI_INTA, /* INTA# */ \ CYGNUM_HAL_INTERRUPT_PCI_INTB, /* INTB# */ \ CYGNUM_HAL_INTERRUPT_PCI_INTC, /* INTC# */ \ CYGNUM_HAL_INTERRUPT_PCI_INTD };/* INTD# */ \ \ __vec = __translation[(((__req-1)+CYG_PCI_DEV_GET_DEV(__devfn))&3)]; \ \ __valid = true; \ } else { \ /* Device will not generate interrupt requests. */ \ __valid = false; \ } \ CYG_MACRO_END//-----------------------------------------------------------------------------// end of plf_io.h#endif // CYGONCE_PLF_IO_H
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -