⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 e_sqrt.c

📁 eCos1.31版
💻 C
📖 第 1 页 / 共 2 页
字号:
//===========================================================================////      e_sqrt.c////      Part of the standard mathematical function library////===========================================================================//####COPYRIGHTBEGIN####//                                                                          // -------------------------------------------                              // The contents of this file are subject to the Red Hat eCos Public License // Version 1.1 (the "License"); you may not use this file except in         // compliance with the License.  You may obtain a copy of the License at    // http://www.redhat.com/                                                   //                                                                          // Software distributed under the License is distributed on an "AS IS"      // basis, WITHOUT WARRANTY OF ANY KIND, either express or implied.  See the // License for the specific language governing rights and limitations under // the License.                                                             //                                                                          // The Original Code is eCos - Embedded Configurable Operating System,      // released September 30, 1998.                                             //                                                                          // The Initial Developer of the Original Code is Red Hat.                   // Portions created by Red Hat are                                          // Copyright (C) 1998, 1999, 2000 Red Hat, Inc.                             // All Rights Reserved.                                                     // -------------------------------------------                              //                                                                          //####COPYRIGHTEND####//===========================================================================//#####DESCRIPTIONBEGIN####//// Author(s):   jlarmour// Contributors:  jlarmour// Date:        1998-02-13// Purpose:     // Description: // Usage:       ////####DESCRIPTIONEND####////===========================================================================// CONFIGURATION#include <pkgconf/libm.h>   // Configuration header// Include the Math library?#ifdef CYGPKG_LIBM     // Derived from code with the following copyright/* @(#)e_sqrt.c 1.3 95/01/18 *//* * ==================================================== * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. * * Developed at SunSoft, a Sun Microsystems, Inc. business. * Permission to use, copy, modify, and distribute this * software is freely granted, provided that this notice  * is preserved. * ==================================================== *//* __ieee754_sqrt(x) * Return correctly rounded sqrt. *           ------------------------------------------ *           |  Use the hardware sqrt if you have one | *           ------------------------------------------ * Method:  *   Bit by bit method using integer arithmetic. (Slow, but portable)  *   1. Normalization *      Scale x to y in [1,4) with even powers of 2:  *      find an integer k such that  1 <= (y=x*2^(2k)) < 4, then *              sqrt(x) = 2^k * sqrt(y) *   2. Bit by bit computation *      Let q  = sqrt(y) truncated to i bit after binary point (q = 1), *           i                                                   0 *                                     i+1         2 *          s  = 2*q , and      y  =  2   * ( y - q  ).         (1) *           i      i            i                 i *                                                         *      To compute q    from q , one checks whether  *                  i+1       i                        * *                            -(i+1) 2 *                      (q + 2      ) <= y.                     (2) *                        i *                                                            -(i+1) *      If (2) is false, then q   = q ; otherwise q   = q  + 2      . *                             i+1   i             i+1   i * *      With some algebric manipulation, it is not difficult to see *      that (2) is equivalent to  *                             -(i+1) *                      s  +  2       <= y                      (3) *                       i                i * *      The advantage of (3) is that s  and y  can be computed by  *                                    i      i *      the following recurrence formula: *          if (3) is false * *          s     =  s  ,       y    = y   ;                    (4) *           i+1      i          i+1    i * *          otherwise, *                         -i                     -(i+1) *          s     =  s  + 2  ,  y    = y  -  s  - 2             (5) *           i+1      i          i+1    i     i *                               *      One may easily use induction to prove (4) and (5).  *      Note. Since the left hand side of (3) contain only i+2 bits, *            it does not necessary to do a full (53-bit) comparison  *            in (3). *   3. Final rounding *      After generating the 53 bits result, we compute one more bit. *      Together with the remainder, we can decide whether the *      result is exact, bigger than 1/2ulp, or less than 1/2ulp *      (it will never equal to 1/2ulp). *      The rounding mode can be detected by checking whether *      huge + tiny is equal to huge, and whether huge - tiny is *      equal to huge for some floating point number "huge" and "tiny". *               * Special cases: *      sqrt(+-0) = +-0         ... exact *      sqrt(inf) = inf *      sqrt(-ve) = NaN         ... with invalid signal *      sqrt(NaN) = NaN         ... with invalid signal for signaling NaN * * Other methods : see the appended file at the end of the program below. *--------------- */#include "mathincl/fdlibm.h"static  const double    one     = 1.0, tiny=1.0e-300;        double __ieee754_sqrt(double x){        double z;        int     sign = (int)0x80000000;         unsigned r,t1,s1,ix1,q1;        int ix0,s0,q,m,t,i;        ix0 = CYG_LIBM_HI(x);                   /* high word of x */        ix1 = CYG_LIBM_LO(x);           /* low word of x */    /* take care of Inf and NaN */        if((ix0&0x7ff00000)==0x7ff00000) {                                  return x*x+x;               /* sqrt(NaN)=NaN, sqrt(+inf)=+inf                                           sqrt(-inf)=sNaN */        }     /* take care of zero */        if(ix0<=0) {            if(((ix0&(~sign))|ix1)==0) return x;/* sqrt(+-0) = +-0 */            else if(ix0<0)                return (x-x)/(x-x);             /* sqrt(-ve) = sNaN */        }    /* normalize x */        m = (ix0>>20);        if(m==0) {                              /* subnormal x */            while(ix0==0) {                m -= 21;                ix0 |= (ix1>>11); ix1 <<= 21;            }            for(i=0;(ix0&0x00100000)==0;i++) ix0<<=1;            m -= i-1;            ix0 |= (ix1>>(32-i));            ix1 <<= i;        }        m -= 1023;      /* unbias exponent */        ix0 = (ix0&0x000fffff)|0x00100000;        if(m&1){        /* odd m, double x to make it even */            ix0 += ix0 + ((ix1&sign)>>31);            ix1 += ix1;        }        m >>= 1;        /* m = [m/2] */    /* generate sqrt(x) bit by bit */        ix0 += ix0 + ((ix1&sign)>>31);        ix1 += ix1;        q = q1 = s0 = s1 = 0;   /* [q,q1] = sqrt(x) */        r = 0x00200000;         /* r = moving bit from right to left */        while(r!=0) {            t = s0+r;             if(t<=ix0) {                 s0   = t+r;                 ix0 -= t;                 q   += r;             }             ix0 += ix0 + ((ix1&sign)>>31);            ix1 += ix1;            r>>=1;        }        r = sign;        while(r!=0) {            t1 = s1+r;             t  = s0;            if((t<ix0)||((t==ix0)&&(t1<=ix1))) {                 s1  = t1+r;                if(((t1&sign)==(unsigned)sign)&&(s1&sign)==0) s0 += 1;                ix0 -= t;                if (ix1 < t1) ix0 -= 1;                ix1 -= t1;                q1  += r;            }            ix0 += ix0 + ((ix1&sign)>>31);            ix1 += ix1;            r>>=1;        }    /* use floating add to find out rounding direction */        if((ix0|ix1)!=0) {            z = one-tiny; /* trigger inexact flag */            if (z>=one) {                z = one+tiny;                if (q1==(unsigned)0xffffffff) { q1=0; q += 1;}                else if (z>one) {                    if (q1==(unsigned)0xfffffffe) q+=1;                    q1+=2;                 } else                    q1 += (q1&1);            }        }        ix0 = (q>>1)+0x3fe00000;        ix1 =  q1>>1;        if ((q&1)==1) ix1 |= sign;        ix0 += (m <<20);        CYG_LIBM_HI(z) = ix0;        CYG_LIBM_LO(z) = ix1;        return z;}/*Other methods  (use floating-point arithmetic)-------------(This is a copy of a drafted paper by Prof W. Kahan and K.C. Ng, written in May, 1986)        Two algorithms are given here to implement sqrt(x)         (IEEE double precision arithmetic) in software.        Both supply sqrt(x) correctly rounded. The first algorithm (in        Section A) uses newton iterations and involves four divisions.        The second one uses reciproot iterations to avoid division, but        requires more multiplications. Both algorithms need the ability        to chop results of arithmetic operations instead of round them, 

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -