⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 e_log.c

📁 eCos1.31版
💻 C
字号:
//===========================================================================////      e_log.c////      Part of the standard mathematical function library////===========================================================================//####COPYRIGHTBEGIN####//                                                                          // -------------------------------------------                              // The contents of this file are subject to the Red Hat eCos Public License // Version 1.1 (the "License"); you may not use this file except in         // compliance with the License.  You may obtain a copy of the License at    // http://www.redhat.com/                                                   //                                                                          // Software distributed under the License is distributed on an "AS IS"      // basis, WITHOUT WARRANTY OF ANY KIND, either express or implied.  See the // License for the specific language governing rights and limitations under // the License.                                                             //                                                                          // The Original Code is eCos - Embedded Configurable Operating System,      // released September 30, 1998.                                             //                                                                          // The Initial Developer of the Original Code is Red Hat.                   // Portions created by Red Hat are                                          // Copyright (C) 1998, 1999, 2000 Red Hat, Inc.                             // All Rights Reserved.                                                     // -------------------------------------------                              //                                                                          //####COPYRIGHTEND####//===========================================================================//#####DESCRIPTIONBEGIN####//// Author(s):   jlarmour// Contributors:  jlarmour// Date:        1998-02-13// Purpose:     // Description: // Usage:       ////####DESCRIPTIONEND####////===========================================================================// CONFIGURATION#include <pkgconf/libm.h>   // Configuration header// Include the Math library?#ifdef CYGPKG_LIBM     // Derived from code with the following copyright/* @(#)e_log.c 1.3 95/01/18 *//* * ==================================================== * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. * * Developed at SunSoft, a Sun Microsystems, Inc. business. * Permission to use, copy, modify, and distribute this * software is freely granted, provided that this notice  * is preserved. * ==================================================== *//* __ieee754_log(x) * Return the logrithm of x * * Method :                   *   1. Argument Reduction: find k and f such that  *                      x = 2^k * (1+f),  *         where  sqrt(2)/2 < 1+f < sqrt(2) . * *   2. Approximation of log(1+f). *      Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s) *               = 2s + 2/3 s**3 + 2/5 s**5 + ....., *               = 2s + s*R *      We use a special Reme algorithm on [0,0.1716] to generate  *      a polynomial of degree 14 to approximate R The maximum error  *      of this polynomial approximation is bounded by 2**-58.45. In *      other words, *                      2      4      6      8      10      12      14 *          R(z) ~ Lg1*s +Lg2*s +Lg3*s +Lg4*s +Lg5*s  +Lg6*s  +Lg7*s *      (the values of Lg1 to Lg7 are listed in the program) *      and *          |      2          14          |     -58.45 *          | Lg1*s +...+Lg7*s    -  R(z) | <= 2  *          |                             | *      Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2. *      In order to guarantee error in log below 1ulp, we compute log *      by *              log(1+f) = f - s*(f - R)        (if f is not too large) *              log(1+f) = f - (hfsq - s*(hfsq+R)).     (better accuracy) *       *      3. Finally,  log(x) = k*ln2 + log(1+f).   *                          = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo))) *         Here ln2 is split into two floating point number:  *                      ln2_hi + ln2_lo, *         where n*ln2_hi is always exact for |n| < 2000. * * Special cases: *      log(x) is NaN with signal if x < 0 (including -INF) ;  *      log(+INF) is +INF; log(0) is -INF with signal; *      log(NaN) is that NaN with no signal. * * Accuracy: *      according to an error analysis, the error is always less than *      1 ulp (unit in the last place). * * Constants: * The hexadecimal values are the intended ones for the following  * constants. The decimal values may be used, provided that the  * compiler will convert from decimal to binary accurately enough  * to produce the hexadecimal values shown. */#include "mathincl/fdlibm.h"static const doubleln2_hi  =  6.93147180369123816490e-01,  /* 3fe62e42 fee00000 */ln2_lo  =  1.90821492927058770002e-10,  /* 3dea39ef 35793c76 */two54   =  1.80143985094819840000e+16,  /* 43500000 00000000 */Lg1 = 6.666666666666735130e-01,  /* 3FE55555 55555593 */Lg2 = 3.999999999940941908e-01,  /* 3FD99999 9997FA04 */Lg3 = 2.857142874366239149e-01,  /* 3FD24924 94229359 */Lg4 = 2.222219843214978396e-01,  /* 3FCC71C5 1D8E78AF */Lg5 = 1.818357216161805012e-01,  /* 3FC74664 96CB03DE */Lg6 = 1.531383769920937332e-01,  /* 3FC39A09 D078C69F */Lg7 = 1.479819860511658591e-01;  /* 3FC2F112 DF3E5244 */static double zero   =  0.0;        double __ieee754_log(double x){        double hfsq,f,s,z,R,w,t1,t2,dk;        int k,hx,i,j;        unsigned lx;        hx = CYG_LIBM_HI(x);            /* high word of x */        lx = CYG_LIBM_LO(x);            /* low  word of x */        k=0;        if (hx < 0x00100000) {                  /* x < 2**-1022  */            if (((hx&0x7fffffff)|lx)==0)                 return -two54/zero;             /* log(+-0)=-inf */            if (hx<0) return (x-x)/zero;        /* log(-#) = NaN */            k -= 54; x *= two54; /* subnormal number, scale up x */            hx = CYG_LIBM_HI(x);                /* high word of x */        }         if (hx >= 0x7ff00000) return x+x;        k += (hx>>20)-1023;        hx &= 0x000fffff;        i = (hx+0x95f64)&0x100000;        CYG_LIBM_HI(x) = hx|(i^0x3ff00000);     /* normalize x or x/2 */        k += (i>>20);        f = x-1.0;        if((0x000fffff&(2+hx))<3) {     /* |f| < 2**-20 */            if(f==zero) {                if(k==0) return zero;                  else {                    dk=(double)k;                    return dk*ln2_hi+dk*ln2_lo;                }            }            R = f*f*(0.5-0.33333333333333333*f);            if(k==0) return f-R;            else {                dk=(double)k;                return dk*ln2_hi-((R-dk*ln2_lo)-f);            }        }        s = f/(2.0+f);         dk = (double)k;        z = s*s;        i = hx-0x6147a;        w = z*z;        j = 0x6b851-hx;        t1= w*(Lg2+w*(Lg4+w*Lg6));         t2= z*(Lg1+w*(Lg3+w*(Lg5+w*Lg7)));         i |= j;        R = t2+t1;        if(i>0) {            hfsq=0.5*f*f;            if(k==0) return f-(hfsq-s*(hfsq+R)); else                     return dk*ln2_hi-((hfsq-(s*(hfsq+R)+dk*ln2_lo))-f);        } else {            if(k==0) return f-s*(f-R); else                     return dk*ln2_hi-((s*(f-R)-dk*ln2_lo)-f);        }}#endif // ifdef CYGPKG_LIBM     // EOF e_log.c

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -