⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 e_exp.c

📁 eCos1.31版
💻 C
字号:
//===========================================================================////      e_exp.c////      Part of the standard mathematical function library////===========================================================================//####COPYRIGHTBEGIN####//                                                                          // -------------------------------------------                              // The contents of this file are subject to the Red Hat eCos Public License // Version 1.1 (the "License"); you may not use this file except in         // compliance with the License.  You may obtain a copy of the License at    // http://www.redhat.com/                                                   //                                                                          // Software distributed under the License is distributed on an "AS IS"      // basis, WITHOUT WARRANTY OF ANY KIND, either express or implied.  See the // License for the specific language governing rights and limitations under // the License.                                                             //                                                                          // The Original Code is eCos - Embedded Configurable Operating System,      // released September 30, 1998.                                             //                                                                          // The Initial Developer of the Original Code is Red Hat.                   // Portions created by Red Hat are                                          // Copyright (C) 1998, 1999, 2000 Red Hat, Inc.                             // All Rights Reserved.                                                     // -------------------------------------------                              //                                                                          //####COPYRIGHTEND####//===========================================================================//#####DESCRIPTIONBEGIN####//// Author(s):   jlarmour// Contributors:  jlarmour// Date:        1998-02-13// Purpose:     // Description: // Usage:       ////####DESCRIPTIONEND####////===========================================================================// CONFIGURATION#include <pkgconf/libm.h>   // Configuration header// Include the Math library?#ifdef CYGPKG_LIBM     // Derived from code with the following copyright/* @(#)e_exp.c 1.3 95/01/18 *//* * ==================================================== * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. * * Developed at SunSoft, a Sun Microsystems, Inc. business. * Permission to use, copy, modify, and distribute this * software is freely granted, provided that this notice  * is preserved. * ==================================================== *//* __ieee754_exp(x) * Returns the exponential of x. * * Method *   1. Argument reduction: *      Reduce x to an r so that |r| <= 0.5*ln2 ~ 0.34658. *      Given x, find r and integer k such that * *               x = k*ln2 + r,  |r| <= 0.5*ln2.   * *      Here r will be represented as r = hi-lo for better  *      accuracy. * *   2. Approximation of exp(r) by a special rational function on *      the interval [0,0.34658]: *      Write *          R(r**2) = r*(exp(r)+1)/(exp(r)-1) = 2 + r*r/6 - r**4/360 + ... *      We use a special Reme algorithm on [0,0.34658] to generate  *      a polynomial of degree 5 to approximate R. The maximum error  *      of this polynomial approximation is bounded by 2**-59. In *      other words, *          R(z) ~ 2.0 + P1*z + P2*z**2 + P3*z**3 + P4*z**4 + P5*z**5 *      (where z=r*r, and the values of P1 to P5 are listed below) *      and *          |                  5          |     -59 *          | 2.0+P1*z+...+P5*z   -  R(z) | <= 2  *          |                             | *      The computation of exp(r) thus becomes *                             2*r *              exp(r) = 1 + ------- *                            R - r *                                 r*R1(r)       *                     = 1 + r + ----------- (for better accuracy) *                                2 - R1(r) *      where *                               2       4             10 *              R1(r) = r - (P1*r  + P2*r  + ... + P5*r   ). *       *   3. Scale back to obtain exp(x): *      From step 1, we have *         exp(x) = 2^k * exp(r) * * Special cases: *      exp(INF) is INF, exp(NaN) is NaN; *      exp(-INF) is 0, and *      for finite argument, only exp(0)=1 is exact. * * Accuracy: *      according to an error analysis, the error is always less than *      1 ulp (unit in the last place). * * Misc. info. *      For IEEE double  *          if x >  7.09782712893383973096e+02 then exp(x) overflow *          if x < -7.45133219101941108420e+02 then exp(x) underflow * * Constants: * The hexadecimal values are the intended ones for the following  * constants. The decimal values may be used, provided that the  * compiler will convert from decimal to binary accurately enough * to produce the hexadecimal values shown. */#include "mathincl/fdlibm.h"static const doubleone     = 1.0,halF[2] = {0.5,-0.5,},huge    = 1.0e+300,twom1000= 9.33263618503218878990e-302,     /* 2**-1000=0x01700000,0*/o_threshold=  7.09782712893383973096e+02,  /* 0x40862E42, 0xFEFA39EF */u_threshold= -7.45133219101941108420e+02,  /* 0xc0874910, 0xD52D3051 */ln2HI[2]   ={ 6.93147180369123816490e-01,  /* 0x3fe62e42, 0xfee00000 */             -6.93147180369123816490e-01,},/* 0xbfe62e42, 0xfee00000 */ln2LO[2]   ={ 1.90821492927058770002e-10,  /* 0x3dea39ef, 0x35793c76 */             -1.90821492927058770002e-10,},/* 0xbdea39ef, 0x35793c76 */invln2 =  1.44269504088896338700e+00, /* 0x3ff71547, 0x652b82fe */P1   =  1.66666666666666019037e-01, /* 0x3FC55555, 0x5555553E */P2   = -2.77777777770155933842e-03, /* 0xBF66C16C, 0x16BEBD93 */P3   =  6.61375632143793436117e-05, /* 0x3F11566A, 0xAF25DE2C */P4   = -1.65339022054652515390e-06, /* 0xBEBBBD41, 0xC5D26BF1 */P5   =  4.13813679705723846039e-08; /* 0x3E663769, 0x72BEA4D0 */        double __ieee754_exp(double x)  /* default IEEE double exp */{        double y,hi,lo,c,t;        int k,xsb;        unsigned hx;        hi=lo=0.0;                      /* to placate compiler */        hx  = CYG_LIBM_HI(x);           /* high word of x */        xsb = (hx>>31)&1;               /* sign bit of x */        hx &= 0x7fffffff;               /* high word of |x| */    /* filter out non-finite argument */        if(hx >= 0x40862E42) {                  /* if |x|>=709.78... */            if(hx>=0x7ff00000) {                if(((hx&0xfffff)|CYG_LIBM_LO(x))!=0)                      return x+x;                /* NaN */                else return (xsb==0)? x:0.0;    /* exp(+-inf)={inf,0} */            }            if(x > o_threshold) return huge*huge; /* overflow */            if(x < u_threshold) return twom1000*twom1000; /* underflow */        }    /* argument reduction */        if(hx > 0x3fd62e42) {           /* if  |x| > 0.5 ln2 */             if(hx < 0x3FF0A2B2) {       /* and |x| < 1.5 ln2 */                hi = x-ln2HI[xsb]; lo=ln2LO[xsb]; k = 1-xsb-xsb;            } else {                k  = invln2*x+halF[xsb];                t  = k;                hi = x - t*ln2HI[0];    /* t*ln2HI is exact here */                lo = t*ln2LO[0];            }            x  = hi - lo;        }         else if(hx < 0x3e300000)  {     /* when |x|<2**-28 */            if(huge+x>one)                return one+x;/* trigger inexact */            else                k = 0;        }        else k = 0;    /* x is now in primary range */        t  = x*x;        c  = x - t*(P1+t*(P2+t*(P3+t*(P4+t*P5))));        if(k==0)        return one-((x*c)/(c-2.0)-x);         else            y = one-((lo-(x*c)/(2.0-c))-hi);        if(k >= -1021) {            CYG_LIBM_HI(y) += (k<<20);  /* add k to y's exponent */            return y;        } else {            CYG_LIBM_HI(y) += ((k+1000)<<20);/* add k to y's exponent */            return y*twom1000;        }}#endif // ifdef CYGPKG_LIBM     // EOF e_exp.c

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -