⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 e_acos.c

📁 eCos1.31版
💻 C
字号:
//===========================================================================////      e_acos.c////      Part of the standard mathematical function library////===========================================================================//####COPYRIGHTBEGIN####//                                                                          // -------------------------------------------                              // The contents of this file are subject to the Red Hat eCos Public License // Version 1.1 (the "License"); you may not use this file except in         // compliance with the License.  You may obtain a copy of the License at    // http://www.redhat.com/                                                   //                                                                          // Software distributed under the License is distributed on an "AS IS"      // basis, WITHOUT WARRANTY OF ANY KIND, either express or implied.  See the // License for the specific language governing rights and limitations under // the License.                                                             //                                                                          // The Original Code is eCos - Embedded Configurable Operating System,      // released September 30, 1998.                                             //                                                                          // The Initial Developer of the Original Code is Red Hat.                   // Portions created by Red Hat are                                          // Copyright (C) 1998, 1999, 2000 Red Hat, Inc.                             // All Rights Reserved.                                                     // -------------------------------------------                              //                                                                          //####COPYRIGHTEND####//===========================================================================//#####DESCRIPTIONBEGIN####//// Author(s):   jlarmour// Contributors:  jlarmour// Date:        1998-02-13// Purpose:     // Description: // Usage:       ////####DESCRIPTIONEND####////===========================================================================// CONFIGURATION#include <pkgconf/libm.h>   // Configuration header// Include the Math library?#ifdef CYGPKG_LIBM     // Derived from code with the following copyright/* @(#)e_acos.c 1.3 95/01/18 *//* * ==================================================== * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. * * Developed at SunSoft, a Sun Microsystems, Inc. business. * Permission to use, copy, modify, and distribute this * software is freely granted, provided that this notice  * is preserved. * ==================================================== *//* __ieee754_acos(x) * Method :                   *      acos(x)  = pi/2 - asin(x) *      acos(-x) = pi/2 + asin(x) * For |x|<=0.5 *      acos(x) = pi/2 - (x + x*x^2*R(x^2))     (see asin.c) * For x>0.5 *      acos(x) = pi/2 - (pi/2 - 2asin(sqrt((1-x)/2))) *              = 2asin(sqrt((1-x)/2))   *              = 2s + 2s*z*R(z)        ...z=(1-x)/2, s=sqrt(z) *              = 2f + (2c + 2s*z*R(z)) *     where f=hi part of s, and c = (z-f*f)/(s+f) is the correction term *     for f so that f+c ~ sqrt(z). * For x<-0.5 *      acos(x) = pi - 2asin(sqrt((1-|x|)/2)) *              = pi - 0.5*(s+s*z*R(z)), where z=(1-|x|)/2,s=sqrt(z) * * Special cases: *      if x is NaN, return x itself; *      if |x|>1, return NaN with invalid signal. * * Function needed: sqrt */#include "mathincl/fdlibm.h"static const double one=  1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */pi =  3.14159265358979311600e+00, /* 0x400921FB, 0x54442D18 */pio2_hi =  1.57079632679489655800e+00, /* 0x3FF921FB, 0x54442D18 */pio2_lo =  6.12323399573676603587e-17, /* 0x3C91A626, 0x33145C07 */pS0 =  1.66666666666666657415e-01, /* 0x3FC55555, 0x55555555 */pS1 = -3.25565818622400915405e-01, /* 0xBFD4D612, 0x03EB6F7D */pS2 =  2.01212532134862925881e-01, /* 0x3FC9C155, 0x0E884455 */pS3 = -4.00555345006794114027e-02, /* 0xBFA48228, 0xB5688F3B */pS4 =  7.91534994289814532176e-04, /* 0x3F49EFE0, 0x7501B288 */pS5 =  3.47933107596021167570e-05, /* 0x3F023DE1, 0x0DFDF709 */qS1 = -2.40339491173441421878e+00, /* 0xC0033A27, 0x1C8A2D4B */qS2 =  2.02094576023350569471e+00, /* 0x40002AE5, 0x9C598AC8 */qS3 = -6.88283971605453293030e-01, /* 0xBFE6066C, 0x1B8D0159 */qS4 =  7.70381505559019352791e-02; /* 0x3FB3B8C5, 0xB12E9282 */        double __ieee754_acos(double x){        double z,p,q,r,w,s,c,df;        int hx,ix;        hx = CYG_LIBM_HI(x);        ix = hx&0x7fffffff;        if(ix>=0x3ff00000) {    /* |x| >= 1 */            if(((ix-0x3ff00000)|CYG_LIBM_LO(x))==0) {   /* |x|==1 */                if(hx>0) return 0.0;            /* acos(1) = 0  */                else return pi+2.0*pio2_lo;     /* acos(-1)= pi */            }            return (x-x)/(x-x);         /* acos(|x|>1) is NaN */        }        if(ix<0x3fe00000) {     /* |x| < 0.5 */            if(ix<=0x3c600000) return pio2_hi+pio2_lo;/*if|x|<2**-57*/            z = x*x;            p = z*(pS0+z*(pS1+z*(pS2+z*(pS3+z*(pS4+z*pS5)))));            q = one+z*(qS1+z*(qS2+z*(qS3+z*qS4)));            r = p/q;            return pio2_hi - (x - (pio2_lo-x*r));        } else  if (hx<0) {             /* x < -0.5 */            z = (one+x)*0.5;            p = z*(pS0+z*(pS1+z*(pS2+z*(pS3+z*(pS4+z*pS5)))));            q = one+z*(qS1+z*(qS2+z*(qS3+z*qS4)));            s = sqrt(z);            r = p/q;            w = r*s-pio2_lo;            return pi - 2.0*(s+w);        } else {                        /* x > 0.5 */            z = (one-x)*0.5;            s = sqrt(z);            df = s;            CYG_LIBM_LO(df) = 0;            c  = (z-df*df)/(s+df);            p = z*(pS0+z*(pS1+z*(pS2+z*(pS3+z*(pS4+z*pS5)))));            q = one+z*(qS1+z*(qS2+z*(qS3+z*qS4)));            r = p/q;            w = r*s+c;            return 2.0*(df+w);        }}#endif // ifdef CYGPKG_LIBM     // EOF e_acos.c

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -