⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 e_pow.c

📁 eCos1.31版
💻 C
字号:
//========================================================================////      e_pow.c////      Part of the standard mathematical function library////========================================================================//####COPYRIGHTBEGIN####//                                                                          // -------------------------------------------                              // The contents of this file are subject to the Red Hat eCos Public License // Version 1.1 (the "License"); you may not use this file except in         // compliance with the License.  You may obtain a copy of the License at    // http://www.redhat.com/                                                   //                                                                          // Software distributed under the License is distributed on an "AS IS"      // basis, WITHOUT WARRANTY OF ANY KIND, either express or implied.  See the // License for the specific language governing rights and limitations under // the License.                                                             //                                                                          // The Original Code is eCos - Embedded Configurable Operating System,      // released September 30, 1998.                                             //                                                                          // The Initial Developer of the Original Code is Red Hat.                   // Portions created by Red Hat are                                          // Copyright (C) 1998, 1999, 2000 Red Hat, Inc.                             // All Rights Reserved.                                                     // -------------------------------------------                              //                                                                          //####COPYRIGHTEND####//========================================================================//#####DESCRIPTIONBEGIN####//// Author(s):     jlarmour// Contributors:  jlarmour// Date:          1998-02-13// Purpose:     // Description: // Usage:       ////####DESCRIPTIONEND####////========================================================================// CONFIGURATION#include <pkgconf/libm.h>   // Configuration header// Include the Math library?#ifdef CYGPKG_LIBM     // Derived from code with the following copyright/* @(#)e_pow.c 1.3 95/01/18 *//* * ==================================================== * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. * * Developed at SunSoft, a Sun Microsystems, Inc. business. * Permission to use, copy, modify, and distribute this * software is freely granted, provided that this notice  * is preserved. * ==================================================== *//* __ieee754_pow(x,y) return x**y * *                    n * Method:  Let x =  2   * (1+f) *     1. Compute and return log2(x) in two pieces: *             log2(x) = w1 + w2, *        where w1 has 53-24 = 29 bit trailing zeros. *     2. Perform y*log2(x) = n+y' by simulating muti-precision  *        arithmetic, where |y'|<=0.5. *     3. Return x**y = 2**n*exp(y'*log2) * * Special cases: *     1.  (anything) ** 0  is 1 *     2.  (anything) ** 1  is itself *     3.  (anything) ** NAN is NAN *     4.  NAN ** (anything except 0) is NAN *     5.  +-(|x| > 1) **  +INF is +INF *     6.  +-(|x| > 1) **  -INF is +0 *     7.  +-(|x| < 1) **  +INF is +0 *     8.  +-(|x| < 1) **  -INF is +INF *     9.  +-1         ** +-INF is NAN *     10. +0 ** (+anything except 0, NAN)               is +0 *     11. -0 ** (+anything except 0, NAN, odd integer)  is +0 *     12. +0 ** (-anything except 0, NAN)               is +INF *     13. -0 ** (-anything except 0, NAN, odd integer)  is +INF *     14. -0 ** (odd integer) = -( +0 ** (odd integer) ) *     15. +INF ** (+anything except 0,NAN) is +INF *     16. +INF ** (-anything except 0,NAN) is +0 *     17. -INF ** (anything)  = -0 ** (-anything) *     18. (-anything) ** (integer) is (-1)**(integer)*(+anything**integer) *     19. (-anything except 0 and inf) ** (non-integer) is NAN * * Accuracy: *     pow(x,y) returns x**y nearly rounded. In particular *                     pow(integer,integer) *     always returns the correct integer provided it is  *     representable. * * Constants : * The hexadecimal values are the intended ones for the following  * constants. The decimal values may be used, provided that the  * compiler will convert from decimal to binary accurately enough  * to produce the hexadecimal values shown. */#include "mathincl/fdlibm.h"static const double bp[] = {1.0, 1.5,},dp_h[] = { 0.0, 5.84962487220764160156e-01,}, /* 0x3FE2B803, 0x40000000 */dp_l[] = { 0.0, 1.35003920212974897128e-08,}, /* 0x3E4CFDEB, 0x43CFD006 */zero    =  0.0,one     =  1.0,two     =  2.0,two53   =  9007199254740992.0,  /* 0x43400000, 0x00000000 */huge    =  1.0e300,tiny    =  1.0e-300,        /* poly coefs for (3/2)*(log(x)-2s-2/3*s**3 */L1  =  5.99999999999994648725e-01, /* 0x3FE33333, 0x33333303 */L2  =  4.28571428578550184252e-01, /* 0x3FDB6DB6, 0xDB6FABFF */L3  =  3.33333329818377432918e-01, /* 0x3FD55555, 0x518F264D */L4  =  2.72728123808534006489e-01, /* 0x3FD17460, 0xA91D4101 */L5  =  2.30660745775561754067e-01, /* 0x3FCD864A, 0x93C9DB65 */L6  =  2.06975017800338417784e-01, /* 0x3FCA7E28, 0x4A454EEF */P1   =  1.66666666666666019037e-01, /* 0x3FC55555, 0x5555553E */P2   = -2.77777777770155933842e-03, /* 0xBF66C16C, 0x16BEBD93 */P3   =  6.61375632143793436117e-05, /* 0x3F11566A, 0xAF25DE2C */P4   = -1.65339022054652515390e-06, /* 0xBEBBBD41, 0xC5D26BF1 */P5   =  4.13813679705723846039e-08, /* 0x3E663769, 0x72BEA4D0 */lg2  =  6.93147180559945286227e-01, /* 0x3FE62E42, 0xFEFA39EF */lg2_h  =  6.93147182464599609375e-01, /* 0x3FE62E43, 0x00000000 */lg2_l  = -1.90465429995776804525e-09, /* 0xBE205C61, 0x0CA86C39 */ovt =  8.0085662595372944372e-0017, /* -(1024-log2(ovfl+.5ulp)) */cp    =  9.61796693925975554329e-01, /* 0x3FEEC709, 0xDC3A03FD =2/(3ln2) */cp_h  =  9.61796700954437255859e-01,/* 0x3FEEC709, 0xE0000000 =(float)cp */cp_l  = -7.02846165095275826516e-09,/* 0xBE3E2FE0,0x145B01F5=tail of cp_h*/ivln2    =  1.44269504088896338700e+00, /* 0x3FF71547, 0x652B82FE =1/ln2 */ivln2_h  =  1.44269502162933349609e+00, /*0x3FF71547,0x60000000=24b 1/ln2*/ivln2_l  =  1.92596299112661746887e-08;/*0x3E54AE0B,0xF85DDF44=1/ln2 tail*/        double __ieee754_pow(double x, double y){        double z,ax,z_h,z_l,p_h,p_l;        double y1,t1,t2,r,s,t,u,v,w;        int i,j,k,yisint,n;        int hx,hy,ix,iy;        unsigned lx,ly;        hx = CYG_LIBM_HI(x); lx = CYG_LIBM_LO(x);        hy = CYG_LIBM_HI(y); ly = CYG_LIBM_LO(y);        ix = hx&0x7fffffff;  iy = hy&0x7fffffff;    /* y==zero: x**0 = 1 */        if((iy|ly)==0) return one;          /* +-NaN return x+y */        if(ix > 0x7ff00000 || ((ix==0x7ff00000)&&(lx!=0)) ||           iy > 0x7ff00000 || ((iy==0x7ff00000)&&(ly!=0)))                 return x+y;         /* determine if y is an odd int when x < 0     * yisint = 0       ... y is not an integer     * yisint = 1       ... y is an odd int     * yisint = 2       ... y is an even int     */        yisint  = 0;        if(hx<0) {                  if(iy>=0x43400000) yisint = 2; /* even integer y */            else if(iy>=0x3ff00000) {                k = (iy>>20)-0x3ff;        /* exponent */                if(k>20) {                    j = ly>>(52-k);                    if(((unsigned)j<<(52-k))==ly) yisint = 2-(j&1);                } else if(ly==0) {                    j = iy>>(20-k);                    if((j<<(20-k))==iy) yisint = 2-(j&1);                }            }                   }     /* special value of y */        if(ly==0) {                 if (iy==0x7ff00000) {       /* y is +-inf */                if(((ix-0x3ff00000)|lx)==0)                    return  y - y;      /* inf**+-1 is NaN */                else if (ix >= 0x3ff00000)/* (|x|>1)**+-inf = inf,0 */                    return (hy>=0)? y: zero;                else                    /* (|x|<1)**-,+inf = inf,0 */                    return (hy<0)?-y: zero;            }             if(iy==0x3ff00000) {        /* y is  +-1 */                if(hy<0) return one/x; else return x;            }            if(hy==0x40000000) return x*x; /* y is  2 */            if(hy==0x3fe00000) {        /* y is  0.5 */                if(hx>=0)       /* x >= +0 */                return sqrt(x);             }        }        ax   = fabs(x);    /* special value of x */        if(lx==0) {            if(ix==0x7ff00000||ix==0||ix==0x3ff00000){                z = ax;                 /*x is +-0,+-inf,+-1*/                if(hy<0) z = one/z;     /* z = (1/|x|) */                if(hx<0) {                    if(((ix-0x3ff00000)|yisint)==0) {                        z = (z-z)/(z-z); /* (-1)**non-int is NaN */                    } else if(yisint==1)                         z = -z;         /* (x<0)**odd = -(|x|**odd) */                }                return z;            }        }        /* (x<0)**(non-int) is NaN */    /* REDHAT LOCAL: This used to be        if((((hx>>31)+1)|yisint)==0) return (x-x)/(x-x);       but ANSI C says a right shift of a signed negative quantity is       implementation defined.  */        if(((((unsigned)hx>>31)-1)|yisint)==0)            return (x-x)/(x-x);    /* |y| is huge */        if(iy>0x41e00000) { /* if |y| > 2**31 */            if(iy>0x43f00000){  /* if |y| > 2**64, must o/uflow */                if(ix<=0x3fefffff) return (hy<0)? huge*huge:tiny*tiny;                if(ix>=0x3ff00000) return (hy>0)? huge*huge:tiny*tiny;            }        /* over/underflow if x is not close to one */            if(ix<0x3fefffff) return (hy<0)? huge*huge:tiny*tiny;            if(ix>0x3ff00000) return (hy>0)? huge*huge:tiny*tiny;        /* now |1-x| is tiny <= 2**-20, suffice to compute            log(x) by x-x^2/2+x^3/3-x^4/4 */            t = x-1;            /* t has 20 trailing zeros */            w = (t*t)*(0.5-t*(0.3333333333333333333333-t*0.25));            u = ivln2_h*t;      /* ivln2_h has 21 sig. bits */            v = t*ivln2_l-w*ivln2;            t1 = u+v;            CYG_LIBM_LO(t1) = 0;            t2 = v-(t1-u);        } else {            double s2,s_h,s_l,t_h,t_l;            n = 0;        /* take care subnormal number */            if(ix<0x00100000)                {ax *= two53; n -= 53; ix = CYG_LIBM_HI(ax); }            n  += ((ix)>>20)-0x3ff;            j  = ix&0x000fffff;        /* determine interval */            ix = j|0x3ff00000;          /* normalize ix */            if(j<=0x3988E) k=0;         /* |x|<sqrt(3/2) */            else if(j<0xBB67A) k=1;     /* |x|<sqrt(3)   */            else {k=0;n+=1;ix -= 0x00100000;}            CYG_LIBM_HI(ax) = ix;        /* compute s = s_h+s_l = (x-1)/(x+1) or (x-1.5)/(x+1.5) */            u = ax-bp[k];               /* bp[0]=1.0, bp[1]=1.5 */            v = one/(ax+bp[k]);            s = u*v;            s_h = s;            CYG_LIBM_LO(s_h) = 0;        /* t_h=ax+bp[k] High */            t_h = zero;            CYG_LIBM_HI(t_h)=((ix>>1)|0x20000000)+0x00080000+(k<<18);             t_l = ax - (t_h-bp[k]);            s_l = v*((u-s_h*t_h)-s_h*t_l);        /* compute log(ax) */            s2 = s*s;            r = s2*s2*(L1+s2*(L2+s2*(L3+s2*(L4+s2*(L5+s2*L6)))));            r += s_l*(s_h+s);            s2  = s_h*s_h;            t_h = 3.0+s2+r;            CYG_LIBM_LO(t_h) = 0;            t_l = r-((t_h-3.0)-s2);        /* u+v = s*(1+...) */            u = s_h*t_h;            v = s_l*t_h+t_l*s;        /* 2/(3log2)*(s+...) */            p_h = u+v;            CYG_LIBM_LO(p_h) = 0;            p_l = v-(p_h-u);            z_h = cp_h*p_h;             /* cp_h+cp_l = 2/(3*log2) */            z_l = cp_l*p_h+p_l*cp+dp_l[k];        /* log2(ax) = (s+..)*2/(3*log2) = n + dp_h + z_h + z_l */            t = (double)n;            t1 = (((z_h+z_l)+dp_h[k])+t);            CYG_LIBM_LO(t1) = 0;            t2 = z_l-(((t1-t)-dp_h[k])-z_h);        }        s = one; /* s (sign of result -ve**odd) = -1 else = 1 */        if((((hx>>31)+1)|(yisint-1))==0) s = -one;/* (-ve)**(odd int) */    /* split up y into y1+y2 and compute (y1+y2)*(t1+t2) */        y1  = y;        CYG_LIBM_LO(y1) = 0;        p_l = (y-y1)*t1+y*t2;        p_h = y1*t1;        z = p_l+p_h;        j = CYG_LIBM_HI(z);        i = CYG_LIBM_LO(z);        if (j>=0x40900000) {                            /* z >= 1024 */            if(((j-0x40900000)|i)!=0)                   /* if z > 1024 */                return s*huge*huge;                     /* overflow */            else {                if(p_l+ovt>z-p_h) return s*huge*huge;   /* overflow */            }        } else if((j&0x7fffffff)>=0x4090cc00 ) {        /* z <= -1075 */            if(((j-0xc090cc00)|i)!=0)           /* z < -1075 */                return s*tiny*tiny;             /* underflow */            else {                if(p_l<=z-p_h) return s*tiny*tiny;      /* underflow */            }        }    /*     * compute 2**(p_h+p_l)     */        i = j&0x7fffffff;        k = (i>>20)-0x3ff;        n = 0;        if(i>0x3fe00000) {              /* if |z| > 0.5, set n = [z+0.5] */            n = j+(0x00100000>>(k+1));            k = ((n&0x7fffffff)>>20)-0x3ff;     /* new k for n */            t = zero;            CYG_LIBM_HI(t) = (n&~(0x000fffff>>k));            n = ((n&0x000fffff)|0x00100000)>>(20-k);            if(j<0) n = -n;            p_h -= t;        }         t = p_l+p_h;        CYG_LIBM_LO(t) = 0;        u = t*lg2_h;        v = (p_l-(t-p_h))*lg2+t*lg2_l;        z = u+v;        w = v-(z-u);        t  = z*z;        t1  = z - t*(P1+t*(P2+t*(P3+t*(P4+t*P5))));        r  = (z*t1)/(t1-two)-(w+z*w);        z  = one-(r-z);        j  = CYG_LIBM_HI(z);        j += (n<<20);        if((j>>20)<=0) z = scalbn(z,n); /* subnormal output */        else CYG_LIBM_HI(z) += (n<<20);        return s*z;}#endif // ifdef CYGPKG_LIBM     // EOF e_pow.c

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -