⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 e_asin.c

📁 eCos1.31版
💻 C
字号:
//===========================================================================////      e_asin.c////      Part of the standard mathematical function library////===========================================================================//####COPYRIGHTBEGIN####//                                                                          // -------------------------------------------                              // The contents of this file are subject to the Red Hat eCos Public License // Version 1.1 (the "License"); you may not use this file except in         // compliance with the License.  You may obtain a copy of the License at    // http://www.redhat.com/                                                   //                                                                          // Software distributed under the License is distributed on an "AS IS"      // basis, WITHOUT WARRANTY OF ANY KIND, either express or implied.  See the // License for the specific language governing rights and limitations under // the License.                                                             //                                                                          // The Original Code is eCos - Embedded Configurable Operating System,      // released September 30, 1998.                                             //                                                                          // The Initial Developer of the Original Code is Red Hat.                   // Portions created by Red Hat are                                          // Copyright (C) 1998, 1999, 2000 Red Hat, Inc.                             // All Rights Reserved.                                                     // -------------------------------------------                              //                                                                          //####COPYRIGHTEND####//===========================================================================//#####DESCRIPTIONBEGIN####//// Author(s):   jlarmour// Contributors:  jlarmour// Date:        1998-02-13// Purpose:     // Description: // Usage:       ////####DESCRIPTIONEND####////===========================================================================// CONFIGURATION#include <pkgconf/libm.h>   // Configuration header// Include the Math library?#ifdef CYGPKG_LIBM     // Derived from code with the following copyright/* @(#)e_asin.c 1.3 95/01/18 *//* * ==================================================== * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. * * Developed at SunSoft, a Sun Microsystems, Inc. business. * Permission to use, copy, modify, and distribute this * software is freely granted, provided that this notice  * is preserved. * ==================================================== *//* __ieee754_asin(x) * Method :                   *      Since  asin(x) = x + x^3/6 + x^5*3/40 + x^7*15/336 + ... *      we approximate asin(x) on [0,0.5] by *              asin(x) = x + x*x^2*R(x^2) *      where *              R(x^2) is a rational approximation of (asin(x)-x)/x^3  *      and its remez error is bounded by *              |(asin(x)-x)/x^3 - R(x^2)| < 2^(-58.75) * *      For x in [0.5,1] *              asin(x) = pi/2-2*asin(sqrt((1-x)/2)) *      Let y = (1-x), z = y/2, s := sqrt(z), and pio2_hi+pio2_lo=pi/2; *      then for x>0.98 *              asin(x) = pi/2 - 2*(s+s*z*R(z)) *                      = pio2_hi - (2*(s+s*z*R(z)) - pio2_lo) *      For x<=0.98, let pio4_hi = pio2_hi/2, then *              f = hi part of s; *              c = sqrt(z) - f = (z-f*f)/(s+f)         ...f+c=sqrt(z) *      and *              asin(x) = pi/2 - 2*(s+s*z*R(z)) *                      = pio4_hi+(pio4-2s)-(2s*z*R(z)-pio2_lo) *                      = pio4_hi+(pio4-2f)-(2s*z*R(z)-(pio2_lo+2c)) * * Special cases: *      if x is NaN, return x itself; *      if |x|>1, return NaN with invalid signal. * */#include "mathincl/fdlibm.h"static const double one =  1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */huge =  1.000e+300,pio2_hi =  1.57079632679489655800e+00, /* 0x3FF921FB, 0x54442D18 */pio2_lo =  6.12323399573676603587e-17, /* 0x3C91A626, 0x33145C07 */pio4_hi =  7.85398163397448278999e-01, /* 0x3FE921FB, 0x54442D18 */        /* coefficient for R(x^2) */pS0 =  1.66666666666666657415e-01, /* 0x3FC55555, 0x55555555 */pS1 = -3.25565818622400915405e-01, /* 0xBFD4D612, 0x03EB6F7D */pS2 =  2.01212532134862925881e-01, /* 0x3FC9C155, 0x0E884455 */pS3 = -4.00555345006794114027e-02, /* 0xBFA48228, 0xB5688F3B */pS4 =  7.91534994289814532176e-04, /* 0x3F49EFE0, 0x7501B288 */pS5 =  3.47933107596021167570e-05, /* 0x3F023DE1, 0x0DFDF709 */qS1 = -2.40339491173441421878e+00, /* 0xC0033A27, 0x1C8A2D4B */qS2 =  2.02094576023350569471e+00, /* 0x40002AE5, 0x9C598AC8 */qS3 = -6.88283971605453293030e-01, /* 0xBFE6066C, 0x1B8D0159 */qS4 =  7.70381505559019352791e-02; /* 0x3FB3B8C5, 0xB12E9282 */        double __ieee754_asin(double x){        double t,w,p,q,c,r,s;        int hx,ix;                hx = CYG_LIBM_HI(x);        ix = hx&0x7fffffff;        if(ix>= 0x3ff00000) {           /* |x|>= 1 */            if(((ix-0x3ff00000)|CYG_LIBM_LO(x))==0)                    /* asin(1)=+-pi/2 with inexact */                return x*pio2_hi+x*pio2_lo;                 return (x-x)/(x-x);         /* asin(|x|>1) is NaN */           } else if (ix<0x3fe00000) {     /* |x|<0.5 */            if(ix<0x3e400000) {         /* if |x| < 2**-27 */                if(huge+x>one) return x;/* return x with inexact if x!=0*/            } else {                t = x*x;                p = t*(pS0+t*(pS1+t*(pS2+t*(pS3+t*(pS4+t*pS5)))));                q = one+t*(qS1+t*(qS2+t*(qS3+t*qS4)));                w = p/q;                return x+x*w;            }        }        /* 1> |x|>= 0.5 */        w = one-fabs(x);        t = w*0.5;        p = t*(pS0+t*(pS1+t*(pS2+t*(pS3+t*(pS4+t*pS5)))));        q = one+t*(qS1+t*(qS2+t*(qS3+t*qS4)));        s = sqrt(t);        if(ix>=0x3FEF3333) {    /* if |x| > 0.975 */            w = p/q;            t = pio2_hi-(2.0*(s+s*w)-pio2_lo);        } else {            w  = s;            CYG_LIBM_LO(w) = 0;            c  = (t-w*w)/(s+w);            r  = p/q;            p  = 2.0*s*r-(pio2_lo-2.0*c);            q  = pio4_hi-2.0*w;            t  = pio4_hi-(p-q);        }            if(hx>0) return t; else return -t;    }#endif // ifdef CYGPKG_LIBM     // EOF e_asin.c

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -