⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 s_atan.c

📁 eCos1.31版
💻 C
字号:
//===========================================================================////      s_atan.c////      Part of the standard mathematical function library////===========================================================================//####COPYRIGHTBEGIN####//                                                                          // -------------------------------------------                              // The contents of this file are subject to the Red Hat eCos Public License // Version 1.1 (the "License"); you may not use this file except in         // compliance with the License.  You may obtain a copy of the License at    // http://www.redhat.com/                                                   //                                                                          // Software distributed under the License is distributed on an "AS IS"      // basis, WITHOUT WARRANTY OF ANY KIND, either express or implied.  See the // License for the specific language governing rights and limitations under // the License.                                                             //                                                                          // The Original Code is eCos - Embedded Configurable Operating System,      // released September 30, 1998.                                             //                                                                          // The Initial Developer of the Original Code is Red Hat.                   // Portions created by Red Hat are                                          // Copyright (C) 1998, 1999, 2000 Red Hat, Inc.                             // All Rights Reserved.                                                     // -------------------------------------------                              //                                                                          //####COPYRIGHTEND####//===========================================================================//#####DESCRIPTIONBEGIN####//// Author(s):   jlarmour// Contributors:  jlarmour// Date:        1998-02-13// Purpose:     // Description: // Usage:       ////####DESCRIPTIONEND####////===========================================================================// CONFIGURATION#include <pkgconf/libm.h>   // Configuration header// Include the Math library?#ifdef CYGPKG_LIBM     // Derived from code with the following copyright/* @(#)s_atan.c 1.3 95/01/18 *//* * ==================================================== * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. * * Developed at SunSoft, a Sun Microsystems, Inc. business. * Permission to use, copy, modify, and distribute this * software is freely granted, provided that this notice  * is preserved. * ==================================================== * *//* atan(x) * Method *   1. Reduce x to positive by atan(x) = -atan(-x). *   2. According to the integer k=4t+0.25 chopped, t=x, the argument *      is further reduced to one of the following intervals and the *      arctangent of t is evaluated by the corresponding formula: * *      [0,7/16]      atan(x) = t-t^3*(a1+t^2*(a2+...(a10+t^2*a11)...) *      [7/16,11/16]  atan(x) = atan(1/2) + atan( (t-0.5)/(1+t/2) ) *      [11/16.19/16] atan(x) = atan( 1 ) + atan( (t-1)/(1+t) ) *      [19/16,39/16] atan(x) = atan(3/2) + atan( (t-1.5)/(1+1.5t) ) *      [39/16,INF]   atan(x) = atan(INF) + atan( -1/t ) * * Constants: * The hexadecimal values are the intended ones for the following  * constants. The decimal values may be used, provided that the  * compiler will convert from decimal to binary accurately enough  * to produce the hexadecimal values shown. */#include "mathincl/fdlibm.h"static const double atanhi[] = {  4.63647609000806093515e-01, /* atan(0.5)hi 0x3FDDAC67, 0x0561BB4F */  7.85398163397448278999e-01, /* atan(1.0)hi 0x3FE921FB, 0x54442D18 */  9.82793723247329054082e-01, /* atan(1.5)hi 0x3FEF730B, 0xD281F69B */  1.57079632679489655800e+00, /* atan(inf)hi 0x3FF921FB, 0x54442D18 */};static const double atanlo[] = {  2.26987774529616870924e-17, /* atan(0.5)lo 0x3C7A2B7F, 0x222F65E2 */  3.06161699786838301793e-17, /* atan(1.0)lo 0x3C81A626, 0x33145C07 */  1.39033110312309984516e-17, /* atan(1.5)lo 0x3C700788, 0x7AF0CBBD */  6.12323399573676603587e-17, /* atan(inf)lo 0x3C91A626, 0x33145C07 */};static const double aT[] = {  3.33333333333329318027e-01, /* 0x3FD55555, 0x5555550D */ -1.99999999998764832476e-01, /* 0xBFC99999, 0x9998EBC4 */  1.42857142725034663711e-01, /* 0x3FC24924, 0x920083FF */ -1.11111104054623557880e-01, /* 0xBFBC71C6, 0xFE231671 */  9.09088713343650656196e-02, /* 0x3FB745CD, 0xC54C206E */ -7.69187620504482999495e-02, /* 0xBFB3B0F2, 0xAF749A6D */  6.66107313738753120669e-02, /* 0x3FB10D66, 0xA0D03D51 */ -5.83357013379057348645e-02, /* 0xBFADDE2D, 0x52DEFD9A */  4.97687799461593236017e-02, /* 0x3FA97B4B, 0x24760DEB */ -3.65315727442169155270e-02, /* 0xBFA2B444, 0x2C6A6C2F */  1.62858201153657823623e-02, /* 0x3F90AD3A, 0xE322DA11 */};        static const double one   = 1.0,huge   = 1.0e300;        double atan(double x){        double w,s1,s2,z;        int ix,hx,id;        hx = CYG_LIBM_HI(x);        ix = hx&0x7fffffff;        if(ix>=0x44100000) {    /* if |x| >= 2^66 */            if(ix>0x7ff00000||                (ix==0x7ff00000&&(CYG_LIBM_LO(x)!=0)))                return x+x;             /* NaN */            if(hx>0) return  atanhi[3]+atanlo[3];            else     return -atanhi[3]-atanlo[3];        } if (ix < 0x3fdc0000) {        /* |x| < 0.4375 */            if (ix < 0x3e200000) {      /* |x| < 2^-29 */                if(huge+x>one) return x;        /* raise inexact */            }            id = -1;        } else {        x = fabs(x);        if (ix < 0x3ff30000) {          /* |x| < 1.1875 */            if (ix < 0x3fe60000) {      /* 7/16 <=|x|<11/16 */                id = 0; x = (2.0*x-one)/(2.0+x);             } else {                    /* 11/16<=|x|< 19/16 */                id = 1; x  = (x-one)/(x+one);             }        } else {            if (ix < 0x40038000) {      /* |x| < 2.4375 */                id = 2; x  = (x-1.5)/(one+1.5*x);            } else {                    /* 2.4375 <= |x| < 2^66 */                id = 3; x  = -1.0/x;            }        }}    /* end of argument reduction */        z = x*x;        w = z*z;    /* break sum from i=0 to 10 aT[i]z**(i+1) into odd and even poly */        s1 = z*(aT[0]+w*(aT[2]+w*(aT[4]+w*(aT[6]+w*(aT[8]+w*aT[10])))));        s2 = w*(aT[1]+w*(aT[3]+w*(aT[5]+w*(aT[7]+w*aT[9]))));        if (id<0) return x - x*(s1+s2);        else {            z = atanhi[id] - ((x*(s1+s2) - atanlo[id]) - x);            return (hx<0)? -z:z;        }}#endif // ifdef CYGPKG_LIBM     // EOF s_atan.c

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -