📄 s_tanh.c
字号:
//===========================================================================//// s_tanh.c//// Part of the standard mathematical function library////===========================================================================//####COPYRIGHTBEGIN####// // ------------------------------------------- // The contents of this file are subject to the Red Hat eCos Public License // Version 1.1 (the "License"); you may not use this file except in // compliance with the License. You may obtain a copy of the License at // http://www.redhat.com/ // // Software distributed under the License is distributed on an "AS IS" // basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See the // License for the specific language governing rights and limitations under // the License. // // The Original Code is eCos - Embedded Configurable Operating System, // released September 30, 1998. // // The Initial Developer of the Original Code is Red Hat. // Portions created by Red Hat are // Copyright (C) 1998, 1999, 2000 Red Hat, Inc. // All Rights Reserved. // ------------------------------------------- // //####COPYRIGHTEND####//===========================================================================//#####DESCRIPTIONBEGIN####//// Author(s): jlarmour// Contributors: jlarmour// Date: 1998-02-13// Purpose: // Description: // Usage: ////####DESCRIPTIONEND####////===========================================================================// CONFIGURATION#include <pkgconf/libm.h> // Configuration header// Include the Math library?#ifdef CYGPKG_LIBM // Derived from code with the following copyright/* @(#)s_tanh.c 1.3 95/01/18 *//* * ==================================================== * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. * * Developed at SunSoft, a Sun Microsystems, Inc. business. * Permission to use, copy, modify, and distribute this * software is freely granted, provided that this notice * is preserved. * ==================================================== *//* Tanh(x) * Return the Hyperbolic Tangent of x * * Method : * x -x * e - e * 0. tanh(x) is defined to be ----------- * x -x * e + e * 1. reduce x to non-negative by tanh(-x) = -tanh(x). * 2. 0 <= x <= 2**-55 : tanh(x) := x*(one+x) * -t * 2**-55 < x <= 1 : tanh(x) := -----; t = expm1(-2x) * t + 2 * 2 * 1 <= x <= 22.0 : tanh(x) := 1- ----- ; t=expm1(2x) * t + 2 * 22.0 < x <= INF : tanh(x) := 1. * * Special cases: * tanh(NaN) is NaN; * only tanh(0)=0 is exact for finite argument. */#include "mathincl/fdlibm.h"static const double one=1.0, two=2.0, tiny = 1.0e-300; double tanh(double x){ double t,z; int jx,ix; /* High word of |x|. */ jx = CYG_LIBM_HI(x); ix = jx&0x7fffffff; /* x is INF or NaN */ if(ix>=0x7ff00000) { if (jx>=0) return one/x+one; /* tanh(+-inf)=+-1 */ else return one/x-one; /* tanh(NaN) = NaN */ } /* |x| < 22 */ if (ix < 0x40360000) { /* |x|<22 */ if (ix<0x3c800000) /* |x|<2**-55 */ return x*(one+x); /* tanh(small) = small */ if (ix>=0x3ff00000) { /* |x|>=1 */ t = expm1(two*fabs(x)); z = one - two/(t+two); } else { t = expm1(-two*fabs(x)); z= -t/(t+two); } /* |x| > 22, return +-1 */ } else { z = one - tiny; /* raised inexact flag */ } return (jx>=0)? z: -z;}#endif // ifdef CYGPKG_LIBM // EOF s_tanh.c
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -