⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 s_expm1.c

📁 eCos1.31版
💻 C
字号:
//===========================================================================////      s_expm1.c////      Part of the standard mathematical function library////===========================================================================//####COPYRIGHTBEGIN####//                                                                          // -------------------------------------------                              // The contents of this file are subject to the Red Hat eCos Public License // Version 1.1 (the "License"); you may not use this file except in         // compliance with the License.  You may obtain a copy of the License at    // http://www.redhat.com/                                                   //                                                                          // Software distributed under the License is distributed on an "AS IS"      // basis, WITHOUT WARRANTY OF ANY KIND, either express or implied.  See the // License for the specific language governing rights and limitations under // the License.                                                             //                                                                          // The Original Code is eCos - Embedded Configurable Operating System,      // released September 30, 1998.                                             //                                                                          // The Initial Developer of the Original Code is Red Hat.                   // Portions created by Red Hat are                                          // Copyright (C) 1998, 1999, 2000 Red Hat, Inc.                             // All Rights Reserved.                                                     // -------------------------------------------                              //                                                                          //####COPYRIGHTEND####//===========================================================================//#####DESCRIPTIONBEGIN####//// Author(s):   jlarmour// Contributors:  jlarmour// Date:        1998-02-13// Purpose:     // Description: // Usage:       ////####DESCRIPTIONEND####////===========================================================================// CONFIGURATION#include <pkgconf/libm.h>   // Configuration header// Include the Math library?#ifdef CYGPKG_LIBM     // Derived from code with the following copyright/* @(#)s_expm1.c 1.3 95/01/18 *//* * ==================================================== * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. * * Developed at SunSoft, a Sun Microsystems, Inc. business. * Permission to use, copy, modify, and distribute this * software is freely granted, provided that this notice  * is preserved. * ==================================================== *//* expm1(x) * Returns exp(x)-1, the exponential of x minus 1. * * Method *   1. Argument reduction: *      Given x, find r and integer k such that * *               x = k*ln2 + r,  |r| <= 0.5*ln2 ~ 0.34658   * *      Here a correction term c will be computed to compensate  *      the error in r when rounded to a floating-point number. * *   2. Approximating expm1(r) by a special rational function on *      the interval [0,0.34658]: *      Since *          r*(exp(r)+1)/(exp(r)-1) = 2+ r^2/6 - r^4/360 + ... *      we define R1(r*r) by *          r*(exp(r)+1)/(exp(r)-1) = 2+ r^2/6 * R1(r*r) *      That is, *          R1(r**2) = 6/r *((exp(r)+1)/(exp(r)-1) - 2/r) *                   = 6/r * ( 1 + 2.0*(1/(exp(r)-1) - 1/r)) *                   = 1 - r^2/60 + r^4/2520 - r^6/100800 + ... *      We use a special Reme algorithm on [0,0.347] to generate  *      a polynomial of degree 5 in r*r to approximate R1. The  *      maximum error of this polynomial approximation is bounded  *      by 2**-61. In other words, *          R1(z) ~ 1.0 + Q1*z + Q2*z**2 + Q3*z**3 + Q4*z**4 + Q5*z**5 *      where   Q1  =  -1.6666666666666567384E-2, *              Q2  =   3.9682539681370365873E-4, *              Q3  =  -9.9206344733435987357E-6, *              Q4  =   2.5051361420808517002E-7, *              Q5  =  -6.2843505682382617102E-9; *      (where z=r*r, and the values of Q1 to Q5 are listed below) *      with error bounded by *          |                  5           |     -61 *          | 1.0+Q1*z+...+Q5*z   -  R1(z) | <= 2  *          |                              | *       *      expm1(r) = exp(r)-1 is then computed by the following  *      specific way which minimize the accumulation rounding error:  *                             2     3 *                            r     r    [ 3 - (R1 + R1*r/2)  ] *            expm1(r) = r + --- + --- * [--------------------] *                            2     2    [ 6 - r*(3 - R1*r/2) ] *       *      To compensate the error in the argument reduction, we use *              expm1(r+c) = expm1(r) + c + expm1(r)*c  *                         ~ expm1(r) + c + r*c  *      Thus c+r*c will be added in as the correction terms for *      expm1(r+c). Now rearrange the term to avoid optimization  *      screw up: *                      (      2                                    2 ) *                      ({  ( r    [ R1 -  (3 - R1*r/2) ]  )  }    r  ) *       expm1(r+c)~r - ({r*(--- * [--------------------]-c)-c} - --- ) *                      ({  ( 2    [ 6 - r*(3 - R1*r/2) ]  )  }    2  ) *                      (                                             ) *       *                 = r - E *   3. Scale back to obtain expm1(x): *      From step 1, we have *         expm1(x) = either 2^k*[expm1(r)+1] - 1 *                  = or     2^k*[expm1(r) + (1-2^-k)] *   4. Implementation notes: *      (A). To save one multiplication, we scale the coefficient Qi *           to Qi*2^i, and replace z by (x^2)/2. *      (B). To achieve maximum accuracy, we compute expm1(x) by *        (i)   if x < -56*ln2, return -1.0, (raise inexact if x!=inf) *        (ii)  if k=0, return r-E *        (iii) if k=-1, return 0.5*(r-E)-0.5 *        (iv)  if k=1 if r < -0.25, return 2*((r+0.5)- E) *                     else          return  1.0+2.0*(r-E); *        (v)   if (k<-2||k>56) return 2^k(1-(E-r)) - 1 (or exp(x)-1) *        (vi)  if k <= 20, return 2^k((1-2^-k)-(E-r)), else *        (vii) return 2^k(1-((E+2^-k)-r))  * * Special cases: *      expm1(INF) is INF, expm1(NaN) is NaN; *      expm1(-INF) is -1, and *      for finite argument, only expm1(0)=0 is exact. * * Accuracy: *      according to an error analysis, the error is always less than *      1 ulp (unit in the last place). * * Misc. info. *      For IEEE double  *          if x >  7.09782712893383973096e+02 then expm1(x) overflow * * Constants: * The hexadecimal values are the intended ones for the following  * constants. The decimal values may be used, provided that the  * compiler will convert from decimal to binary accurately enough * to produce the hexadecimal values shown. */#include "mathincl/fdlibm.h"static const doubleone             = 1.0,huge            = 1.0e+300,tiny            = 1.0e-300,o_threshold     = 7.09782712893383973096e+02,/* 0x40862E42, 0xFEFA39EF */ln2_hi          = 6.93147180369123816490e-01,/* 0x3fe62e42, 0xfee00000 */ln2_lo          = 1.90821492927058770002e-10,/* 0x3dea39ef, 0x35793c76 */invln2          = 1.44269504088896338700e+00,/* 0x3ff71547, 0x652b82fe */        /* scaled coefficients related to expm1 */Q1  =  -3.33333333333331316428e-02, /* BFA11111 111110F4 */Q2  =   1.58730158725481460165e-03, /* 3F5A01A0 19FE5585 */Q3  =  -7.93650757867487942473e-05, /* BF14CE19 9EAADBB7 */Q4  =   4.00821782732936239552e-06, /* 3ED0CFCA 86E65239 */Q5  =  -2.01099218183624371326e-07; /* BE8AFDB7 6E09C32D */        double expm1(double x){        double y,hi,lo,c,t,e,hxs,hfx,r1;        int k,xsb;        unsigned hx;        c=0.0;                          /* placate compiler */        hx  = CYG_LIBM_HI(x);           /* high word of x */        xsb = hx&0x80000000;            /* sign bit of x */        if(xsb==0) y=x; else y= -x;     /* y = |x| */        hx &= 0x7fffffff;               /* high word of |x| */    /* filter out huge and non-finite argument */        if(hx >= 0x4043687A) {                  /* if |x|>=56*ln2 */            if(hx >= 0x40862E42) {              /* if |x|>=709.78... */                if(hx>=0x7ff00000) {                    if(((hx&0xfffff)|CYG_LIBM_LO(x))!=0)                          return x+x;     /* NaN */                    else return (xsb==0)? x:-1.0;/* exp(+-inf)={inf,-1} */                }                if(x > o_threshold) return huge*huge; /* overflow */            }            if(xsb!=0) { /* x < -56*ln2, return -1.0 with inexact */                if(x+tiny<0.0)          /* raise inexact */                return tiny-one;        /* return -1 */            }        }    /* argument reduction */        if(hx > 0x3fd62e42) {           /* if  |x| > 0.5 ln2 */             if(hx < 0x3FF0A2B2) {       /* and |x| < 1.5 ln2 */                if(xsb==0)                    {hi = x - ln2_hi; lo =  ln2_lo;  k =  1;}                else                    {hi = x + ln2_hi; lo = -ln2_lo;  k = -1;}            } else {                k  = invln2*x+((xsb==0)?0.5:-0.5);                t  = k;                hi = x - t*ln2_hi;      /* t*ln2_hi is exact here */                lo = t*ln2_lo;            }            x  = hi - lo;            c  = (hi-x)-lo;        }         else if(hx < 0x3c900000) {      /* when |x|<2**-54, return x */            t = huge+x; /* return x with inexact flags when x!=0 */            return x - (t-(huge+x));            }        else k = 0;    /* x is now in primary range */        hfx = 0.5*x;        hxs = x*hfx;        r1 = one+hxs*(Q1+hxs*(Q2+hxs*(Q3+hxs*(Q4+hxs*Q5))));        t  = 3.0-r1*hfx;        e  = hxs*((r1-t)/(6.0 - x*t));        if(k==0) return x - (x*e-hxs);          /* c is 0 */        else {            e  = (x*(e-c)-c);            e -= hxs;            if(k== -1) return 0.5*(x-e)-0.5;            if(k==1) {                if(x < -0.25) return -2.0*(e-(x+0.5));                else          return  one+2.0*(x-e);            }            if (k <= -2 || k>56) {   /* suffice to return exp(x)-1 */                y = one-(e-x);                CYG_LIBM_HI(y) += (k<<20);      /* add k to y's exponent */                return y-one;            }            t = one;            if(k<20) {                CYG_LIBM_HI(t) = 0x3ff00000 - (0x200000>>k);  /* t=1-2^-k */                y = t-(e-x);                CYG_LIBM_HI(y) += (k<<20);      /* add k to y's exponent */           } else {                CYG_LIBM_HI(t)  = ((0x3ff-k)<<20);      /* 2^-k */                y = x-(e+t);                y += one;                CYG_LIBM_HI(y) += (k<<20);      /* add k to y's exponent */            }        }        return y;}#endif // ifdef CYGPKG_LIBM     // EOF s_expm1.c

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -