📄 s_tan.c
字号:
//===========================================================================//// s_tan.c//// Part of the standard mathematical function library////===========================================================================//####COPYRIGHTBEGIN####// // ------------------------------------------- // The contents of this file are subject to the Red Hat eCos Public License // Version 1.1 (the "License"); you may not use this file except in // compliance with the License. You may obtain a copy of the License at // http://www.redhat.com/ // // Software distributed under the License is distributed on an "AS IS" // basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See the // License for the specific language governing rights and limitations under // the License. // // The Original Code is eCos - Embedded Configurable Operating System, // released September 30, 1998. // // The Initial Developer of the Original Code is Red Hat. // Portions created by Red Hat are // Copyright (C) 1998, 1999, 2000 Red Hat, Inc. // All Rights Reserved. // ------------------------------------------- // //####COPYRIGHTEND####//===========================================================================//#####DESCRIPTIONBEGIN####//// Author(s): jlarmour// Contributors: jlarmour// Date: 1998-02-13// Purpose: // Description: // Usage: ////####DESCRIPTIONEND####////===========================================================================// CONFIGURATION#include <pkgconf/libm.h> // Configuration header// Include the Math library?#ifdef CYGPKG_LIBM // Derived from code with the following copyright/* @(#)s_tan.c 1.3 95/01/18 *//* * ==================================================== * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. * * Developed at SunSoft, a Sun Microsystems, Inc. business. * Permission to use, copy, modify, and distribute this * software is freely granted, provided that this notice * is preserved. * ==================================================== *//* tan(x) * Return tangent function of x. * * kernel function: * __kernel_tan ... tangent function on [-pi/4,pi/4] * __ieee754_rem_pio2 ... argument reduction routine * * Method. * Let S,C and T denote the sin, cos and tan respectively on * [-PI/4, +PI/4]. Reduce the argument x to y1+y2 = x-k*pi/2 * in [-pi/4 , +pi/4], and let n = k mod 4. * We have * * n sin(x) cos(x) tan(x) * ---------------------------------------------------------- * 0 S C T * 1 C -S -1/T * 2 -S -C T * 3 -C S -1/T * ---------------------------------------------------------- * * Special cases: * Let trig be any of sin, cos, or tan. * trig(+-INF) is NaN, with signals; * trig(NaN) is that NaN; * * Accuracy: * TRIG(x) returns trig(x) nearly rounded */#include "mathincl/fdlibm.h" double tan(double x){ double y[2],z=0.0; int n, ix; /* High word of x. */ ix = CYG_LIBM_HI(x); /* |x| ~< pi/4 */ ix &= 0x7fffffff; if(ix <= 0x3fe921fb) return __kernel_tan(x,z,1); /* tan(Inf or NaN) is NaN */ else if (ix>=0x7ff00000) return x-x; /* NaN */ /* argument reduction needed */ else { n = __ieee754_rem_pio2(x,y); return __kernel_tan(y[0],y[1],1-((n&1)<<1)); /* 1 -- n even -1 -- n odd */ }}#endif // ifdef CYGPKG_LIBM // EOF s_tan.c
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -