⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 k_rem_pio2.c

📁 eCos1.31版
💻 C
字号:
//===========================================================================////      k_rem_pio2.c////      Part of the standard mathematical function library////===========================================================================//####COPYRIGHTBEGIN####//                                                                          // -------------------------------------------                              // The contents of this file are subject to the Red Hat eCos Public License // Version 1.1 (the "License"); you may not use this file except in         // compliance with the License.  You may obtain a copy of the License at    // http://www.redhat.com/                                                   //                                                                          // Software distributed under the License is distributed on an "AS IS"      // basis, WITHOUT WARRANTY OF ANY KIND, either express or implied.  See the // License for the specific language governing rights and limitations under // the License.                                                             //                                                                          // The Original Code is eCos - Embedded Configurable Operating System,      // released September 30, 1998.                                             //                                                                          // The Initial Developer of the Original Code is Red Hat.                   // Portions created by Red Hat are                                          // Copyright (C) 1998, 1999, 2000 Red Hat, Inc.                             // All Rights Reserved.                                                     // -------------------------------------------                              //                                                                          //####COPYRIGHTEND####//===========================================================================//#####DESCRIPTIONBEGIN####//// Author(s):   jlarmour// Contributors:  jlarmour// Date:        1998-02-13// Purpose:     // Description: // Usage:       ////####DESCRIPTIONEND####////===========================================================================// CONFIGURATION#include <pkgconf/libm.h>   // Configuration header// Include the Math library?#ifdef CYGPKG_LIBM     // Derived from code with the following copyright/* @(#)k_rem_pio2.c 1.3 95/01/18 *//* * ==================================================== * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. * * Developed at SunSoft, a Sun Microsystems, Inc. business. * Permission to use, copy, modify, and distribute this * software is freely granted, provided that this notice  * is preserved. * ==================================================== *//* * __kernel_rem_pio2(x,y,e0,nx,prec,ipio2) * double x[],y[]; int e0,nx,prec; int ipio2[]; *  * __kernel_rem_pio2 return the last three digits of N with  *              y = x - N*pi/2 * so that |y| < pi/2. * * The method is to compute the integer (mod 8) and fraction parts of  * (2/pi)*x without doing the full multiplication. In general we * skip the part of the product that are known to be a huge integer ( * more accurately, = 0 mod 8 ). Thus the number of operations are * independent of the exponent of the input. * * (2/pi) is represented by an array of 24-bit integers in ipio2[]. * * Input parameters: *      x[]     The input value (must be positive) is broken into nx  *              pieces of 24-bit integers in double precision format. *              x[i] will be the i-th 24 bit of x. The scaled exponent  *              of x[0] is given in input parameter e0 (i.e., x[0]*2^e0  *              match x's up to 24 bits. * *              Example of breaking a double positive z into x[0]+x[1]+x[2]: *                      e0 = ilogb(z)-23 *                      z  = scalbn(z,-e0) *              for i = 0,1,2 *                      x[i] = floor(z) *                      z    = (z-x[i])*2**24 * * *      y[]     ouput result in an array of double precision numbers. *              The dimension of y[] is: *                      24-bit  precision       1 *                      53-bit  precision       2 *                      64-bit  precision       2 *                      113-bit precision       3 *              The actual value is the sum of them. Thus for 113-bit *              precison, one may have to do something like: * *              long double t,w,r_head, r_tail; *              t = (long double)y[2] + (long double)y[1]; *              w = (long double)y[0]; *              r_head = t+w; *              r_tail = w - (r_head - t); * *      e0      The exponent of x[0] * *      nx      dimension of x[] * *      prec    an integer indicating the precision: *                      0       24  bits (single) *                      1       53  bits (double) *                      2       64  bits (extended) *                      3       113 bits (quad) * *      ipio2[] *              integer array, contains the (24*i)-th to (24*i+23)-th  *              bit of 2/pi after binary point. The corresponding  *              floating value is * *                      ipio2[i] * 2^(-24(i+1)). * * External function: *      double scalbn(), floor(); * * * Here is the description of some local variables: * *      jk      jk+1 is the initial number of terms of ipio2[] needed *              in the computation. The recommended value is 2,3,4, *              6 for single, double, extended,and quad. * *      jz      local integer variable indicating the number of  *              terms of ipio2[] used.  * *      jx      nx - 1 * *      jv      index for pointing to the suitable ipio2[] for the *              computation. In general, we want *                      ( 2^e0*x[0] * ipio2[jv-1]*2^(-24jv) )/8 *              is an integer. Thus *                      e0-3-24*jv >= 0 or (e0-3)/24 >= jv *              Hence jv = max(0,(e0-3)/24). * *      jp      jp+1 is the number of terms in PIo2[] needed, jp = jk. * *      q[]     double array with integral value, representing the *              24-bits chunk of the product of x and 2/pi. * *      q0      the corresponding exponent of q[0]. Note that the *              exponent for q[i] would be q0-24*i. * *      PIo2[]  double precision array, obtained by cutting pi/2 *              into 24 bits chunks.  * *      f[]     ipio2[] in floating point  * *      iq[]    integer array by breaking up q[] in 24-bits chunk. * *      fq[]    final product of x*(2/pi) in fq[0],..,fq[jk] * *      ih      integer. If >0 it indicates q[] is >= 0.5, hence *              it also indicates the *sign* of the result. * *//* * Constants: * The hexadecimal values are the intended ones for the following  * constants. The decimal values may be used, provided that the  * compiler will convert from decimal to binary accurately enough  * to produce the hexadecimal values shown. */#include "mathincl/fdlibm.h"static const int init_jk[] = {2,3,4,6}; /* initial value for jk */static const double PIo2[] = {  1.57079625129699707031e+00, /* 0x3FF921FB, 0x40000000 */  7.54978941586159635335e-08, /* 0x3E74442D, 0x00000000 */  5.39030252995776476554e-15, /* 0x3CF84698, 0x80000000 */  3.28200341580791294123e-22, /* 0x3B78CC51, 0x60000000 */  1.27065575308067607349e-29, /* 0x39F01B83, 0x80000000 */  1.22933308981111328932e-36, /* 0x387A2520, 0x40000000 */  2.73370053816464559624e-44, /* 0x36E38222, 0x80000000 */  2.16741683877804819444e-51, /* 0x3569F31D, 0x00000000 */};static const double                     zero   = 0.0,one    = 1.0,two24   =  1.67772160000000000000e+07, /* 0x41700000, 0x00000000 */twon24  =  5.96046447753906250000e-08; /* 0x3E700000, 0x00000000 */        int __kernel_rem_pio2(double *x, double *y, int e0, int nx, int prec, const int *ipio2) {        int jz,jx,jv,jp,jk,carry,n,iq[20],i,j,k,m,q0,ih;        double z,fw,f[20],fq[20],q[20];    /* initialize jk*/        jk = init_jk[prec];        jp = jk;    /* determine jx,jv,q0, note that 3>q0 */        jx =  nx-1;        jv = (e0-3)/24; if(jv<0) jv=0;        q0 =  e0-24*(jv+1);    /* set up f[0] to f[jx+jk] where f[jx+jk] = ipio2[jv+jk] */        j = jv-jx; m = jx+jk;        for(i=0;i<=m;i++,j++) f[i] = (j<0)? zero : (double) ipio2[j];    /* compute q[0],q[1],...q[jk] */        for (i=0;i<=jk;i++) {            for(j=0,fw=0.0;j<=jx;j++) fw += x[j]*f[jx+i-j]; q[i] = fw;        }        jz = jk;recompute:    /* distill q[] into iq[] reversingly */        for(i=0,j=jz,z=q[jz];j>0;i++,j--) {            fw    =  (double)((int)(twon24* z));            iq[i] =  (int)(z-two24*fw);            z     =  q[j-1]+fw;        }    /* compute n */        z  = scalbn(z,q0);              /* actual value of z */        z -= 8.0*floor(z*0.125);                /* trim off integer >= 8 */        n  = (int) z;        z -= (double)n;        ih = 0;        if(q0>0) {      /* need iq[jz-1] to determine n */            i  = (iq[jz-1]>>(24-q0)); n += i;            iq[jz-1] -= i<<(24-q0);            ih = iq[jz-1]>>(23-q0);        }         else if(q0==0) ih = iq[jz-1]>>23;        else if(z>=0.5) ih=2;        if(ih>0) {      /* q > 0.5 */            n += 1; carry = 0;            for(i=0;i<jz ;i++) {        /* compute 1-q */                j = iq[i];                if(carry==0) {                    if(j!=0) {                        carry = 1; iq[i] = 0x1000000- j;                    }                } else  iq[i] = 0xffffff - j;            }            if(q0>0) {          /* rare case: chance is 1 in 12 */                switch(q0) {                case 1:                   iq[jz-1] &= 0x7fffff; break;                case 2:                   iq[jz-1] &= 0x3fffff; break;                }            }            if(ih==2) {                z = one - z;                if(carry!=0) z -= scalbn(one,q0);            }        }    /* check if recomputation is needed */        if(z==zero) {            j = 0;            for (i=jz-1;i>=jk;i--) j |= iq[i];            if(j==0) { /* need recomputation */                for(k=1;iq[jk-k]==0;k++);   /* k = no. of terms needed */                for(i=jz+1;i<=jz+k;i++) {   /* add q[jz+1] to q[jz+k] */                    f[jx+i] = (double) ipio2[jv+i];                    for(j=0,fw=0.0;j<=jx;j++) fw += x[j]*f[jx+i-j];                    q[i] = fw;                }                jz += k;                goto recompute;            }        }    /* chop off zero terms */        if(z==0.0) {            jz -= 1; q0 -= 24;            while(iq[jz]==0) { jz--; q0-=24;}        } else { /* break z into 24-bit if necessary */            z = scalbn(z,-q0);            if(z>=two24) {                 fw = (double)((int)(twon24*z));                iq[jz] = (int)(z-two24*fw);                jz += 1; q0 += 24;                iq[jz] = (int) fw;            } else iq[jz] = (int) z ;        }    /* convert integer "bit" chunk to floating-point value */        fw = scalbn(one,q0);        for(i=jz;i>=0;i--) {            q[i] = fw*(double)iq[i]; fw*=twon24;        }    /* compute PIo2[0,...,jp]*q[jz,...,0] */        for(i=jz;i>=0;i--) {            for(fw=0.0,k=0;k<=jp&&k<=jz-i;k++) fw += PIo2[k]*q[i+k];            fq[jz-i] = fw;        }    /* compress fq[] into y[] */        switch(prec) {            case 0:                fw = 0.0;                for (i=jz;i>=0;i--) fw += fq[i];                y[0] = (ih==0)? fw: -fw;                 break;            case 1:            case 2:                fw = 0.0;                for (i=jz;i>=0;i--) fw += fq[i];                 y[0] = (ih==0)? fw: -fw;                 fw = fq[0]-fw;                for (i=1;i<=jz;i++) fw += fq[i];                y[1] = (ih==0)? fw: -fw;                 break;            case 3:     /* painful */                for (i=jz;i>0;i--) {                    fw      = fq[i-1]+fq[i];                     fq[i]  += fq[i-1]-fw;                    fq[i-1] = fw;                }                for (i=jz;i>1;i--) {                    fw      = fq[i-1]+fq[i];                     fq[i]  += fq[i-1]-fw;                    fq[i-1] = fw;                }                for (fw=0.0,i=jz;i>=2;i--) fw += fq[i];                 if(ih==0) {                    y[0] =  fq[0]; y[1] =  fq[1]; y[2] =  fw;                } else {                    y[0] = -fq[0]; y[1] = -fq[1]; y[2] = -fw;                }        }        return n&7;}#endif // ifdef CYGPKG_LIBM     // EOF k_rem_pio2.c

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -