⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 k_tan.c

📁 eCos1.31版
💻 C
字号:
//===========================================================================////      k_tan.c////      Part of the standard mathematical function library////===========================================================================//####COPYRIGHTBEGIN####//                                                                          // -------------------------------------------                              // The contents of this file are subject to the Red Hat eCos Public License // Version 1.1 (the "License"); you may not use this file except in         // compliance with the License.  You may obtain a copy of the License at    // http://www.redhat.com/                                                   //                                                                          // Software distributed under the License is distributed on an "AS IS"      // basis, WITHOUT WARRANTY OF ANY KIND, either express or implied.  See the // License for the specific language governing rights and limitations under // the License.                                                             //                                                                          // The Original Code is eCos - Embedded Configurable Operating System,      // released September 30, 1998.                                             //                                                                          // The Initial Developer of the Original Code is Red Hat.                   // Portions created by Red Hat are                                          // Copyright (C) 1998, 1999, 2000 Red Hat, Inc.                             // All Rights Reserved.                                                     // -------------------------------------------                              //                                                                          //####COPYRIGHTEND####//===========================================================================//#####DESCRIPTIONBEGIN####//// Author(s):   jlarmour// Contributors:  jlarmour// Date:        1998-02-13// Purpose:     // Description: // Usage:       ////####DESCRIPTIONEND####////===========================================================================// CONFIGURATION#include <pkgconf/libm.h>   // Configuration header// Include the Math library?#ifdef CYGPKG_LIBM     // Derived from code with the following copyright/* @(#)k_tan.c 1.3 95/01/18 *//* * ==================================================== * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. * * Developed at SunSoft, a Sun Microsystems, Inc. business. * Permission to use, copy, modify, and distribute this * software is freely granted, provided that this notice  * is preserved. * ==================================================== *//* __kernel_tan( x, y, k ) * kernel tan function on [-pi/4, pi/4], pi/4 ~ 0.7854 * Input x is assumed to be bounded by ~pi/4 in magnitude. * Input y is the tail of x. * Input k indicates whether tan (if k=1) or  * -1/tan (if k= -1) is returned. * * Algorithm *      1. Since tan(-x) = -tan(x), we need only to consider positive x.  *      2. if x < 2^-28 (hx<0x3e300000 0), return x with inexact if x!=0. *      3. tan(x) is approximated by a odd polynomial of degree 27 on *         [0,0.67434] *                               3             27 *              tan(x) ~ x + T1*x + ... + T13*x *         where *       *              |tan(x)         2     4            26   |     -59.2 *              |----- - (1+T1*x +T2*x +.... +T13*x    )| <= 2 *              |  x                                    |  *  *         Note: tan(x+y) = tan(x) + tan'(x)*y *                        ~ tan(x) + (1+x*x)*y *         Therefore, for better accuracy in computing tan(x+y), let  *                   3      2      2       2       2 *              r = x *(T2+x *(T3+x *(...+x *(T12+x *T13)))) *         then *                                  3    2 *              tan(x+y) = x + (T1*x + (x *(r+y)+y)) * *      4. For x in [0.67434,pi/4],  let y = pi/4 - x, then *              tan(x) = tan(pi/4-y) = (1-tan(y))/(1+tan(y)) *                     = 1 - 2*(tan(y) - (tan(y)^2)/(1+tan(y))) */#include "mathincl/fdlibm.h"static const double one   =  1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */pio4  =  7.85398163397448278999e-01, /* 0x3FE921FB, 0x54442D18 */pio4lo=  3.06161699786838301793e-17, /* 0x3C81A626, 0x33145C07 */T[] =  {  3.33333333333334091986e-01, /* 0x3FD55555, 0x55555563 */  1.33333333333201242699e-01, /* 0x3FC11111, 0x1110FE7A */  5.39682539762260521377e-02, /* 0x3FABA1BA, 0x1BB341FE */  2.18694882948595424599e-02, /* 0x3F9664F4, 0x8406D637 */  8.86323982359930005737e-03, /* 0x3F8226E3, 0xE96E8493 */  3.59207910759131235356e-03, /* 0x3F6D6D22, 0xC9560328 */  1.45620945432529025516e-03, /* 0x3F57DBC8, 0xFEE08315 */  5.88041240820264096874e-04, /* 0x3F4344D8, 0xF2F26501 */  2.46463134818469906812e-04, /* 0x3F3026F7, 0x1A8D1068 */  7.81794442939557092300e-05, /* 0x3F147E88, 0xA03792A6 */  7.14072491382608190305e-05, /* 0x3F12B80F, 0x32F0A7E9 */ -1.85586374855275456654e-05, /* 0xBEF375CB, 0xDB605373 */  2.59073051863633712884e-05, /* 0x3EFB2A70, 0x74BF7AD4 */};        double __kernel_tan(double x, double y, int iy){        double z,r,v,w,s;        int ix,hx;        hx = CYG_LIBM_HI(x);    /* high word of x */        ix = hx&0x7fffffff;     /* high word of |x| */        if(ix<0x3e300000)                       /* x < 2**-28 */            {if((int)x==0) {                    /* generate inexact */                if(((ix|CYG_LIBM_LO(x))|(iy+1))==0) return one/fabs(x);                else return (iy==1)? x: -one/x;            }            }        if(ix>=0x3FE59428) {                    /* |x|>=0.6744 */            if(hx<0) {x = -x; y = -y;}            z = pio4-x;            w = pio4lo-y;            x = z+w; y = 0.0;        }        z       =  x*x;        w       =  z*z;    /* Break x^5*(T[1]+x^2*T[2]+...) into     *    x^5(T[1]+x^4*T[3]+...+x^20*T[11]) +     *    x^5(x^2*(T[2]+x^4*T[4]+...+x^22*[T12]))     */        r = T[1]+w*(T[3]+w*(T[5]+w*(T[7]+w*(T[9]+w*T[11]))));        v = z*(T[2]+w*(T[4]+w*(T[6]+w*(T[8]+w*(T[10]+w*T[12])))));        s = z*x;        r = y + z*(s*(r+v)+y);        r += T[0]*s;        w = x+r;        if(ix>=0x3FE59428) {            v = (double)iy;            return (double)(1-((hx>>30)&2))*(v-2.0*(x-(w*w/(w+v)-r)));        }        if(iy==1) return w;        else {          /* if allow error up to 2 ulp,                            simply return -1.0/(x+r) here */     /*  compute -1.0/(x+r) accurately */            double a,t;            z  = w;            CYG_LIBM_LO(z) = 0;            v  = r-(z - x);     /* z+v = r+x */            t = a  = -1.0/w;    /* a = -1.0/w */            CYG_LIBM_LO(t) = 0;            s  = 1.0+t*z;            return t+a*(s+t*v);        }}#endif // ifdef CYGPKG_LIBM     // EOF k_tan.c

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -