📄 bvpinit_shi.m
字号:
function solinit = bvpinit(x,v,parameters,varargin)
if isstruct(x)
if nargin < 2 || length(v) < 2
error('MATLAB:bvpinit:NoSolInterval',...
'Did not specify [ANEW BNEW] in BVPINIT(SOL,[ANEW BNEW]).')
elseif nargin < 3
parameters = [];
end
solinit = bvpxtrp(x,v,parameters);
return;
end
% Create a guess structure.
N = length(x);
if x(1) == x(N)
error('MATLAB:bvpinit:XSameEndPts',...
'The entries of x must satisfy a = x(1) ~= x(end) = b.')
elseif x(1) < x(N)
if any(diff(x) < 0)
error('MATLAB:bvpinit:IncreasingXNotMonotonic',...
'The entries of x must satisfy a = x(1) < x(2) < ... < x(end) = b.')
end
else % x(1) > x(N)
if any(diff(x) > 0)
error('MATLAB:bvpinit:DecreasingXNotMonotonic',...
'The entries of x must satisfy a = x(1) > x(2) > ... > x(end) = b.')
end
end
if nargin>2
params = parameters;
else
params = [];
end
extraArgs = varargin;
mbcidx = find(diff(x) == 0); % locate internal interfaces
ismbvp = ~isempty(mbcidx);
if ismbvp
Lidx = [1, mbcidx+1];
Ridx = [mbcidx, length(x)];
end
if isnumeric(v)
w = v;
else
if ismbvp
w = feval(v,x(1),1,extraArgs{:}); % check region 1, only.
else
w = feval(v,x(1),extraArgs{:});
end
end
[m,n] = size(w);
if m == 1
L = n;
elseif n == 1
L = m;
else
error('MATLAB:bvpinit:SolGuessNotVector',...
'The guess for the solution must return a vector.')
end
yinit = zeros(L,N);
if isnumeric(v)
yinit = repmat(v(:),1,N);
else
if ismbvp
for region = 1:nregions
for i = Lidx(region):Ridx(region)
w = feval(v,x(i),region,extraArgs{:});
yinit(:,i) = w(:);
end
end
else
yinit(:,1) = w(:);
for i = 2:N
w = feval(v,x(i),extraArgs{:});
yinit(:,i) = w(:);
end
end
end
solinit.x = x(:)'; % row vector
solinit.y = yinit;
if ~isempty(params)
solinit.parameters = params;
end
%---------------------------------------------------------------------------
function solxtrp = bvpxtrp(sol,v,parameters)
% Extend a solution SOL on [sol.x(1),sol.x(end)]
% to a guess for [v(1),v(end)] by extrapolation.
a = sol.x(1);
b = sol.x(end);
anew = v(1);
bnew = v(end);
if (a < b && (anew > a || bnew < b)) || ...
(a > b && (anew < a || bnew > b))
msg = sprintf(['The call BVPINIT(SOL,[ANEW BNEW]) must have\n',...
'ANEW <= SOL.x(1) < SOL.x(end) <= BNEW or \n',...
'ANEW >= SOL.x(1) > SOL.x(end) >= BNEW. \n']);
error('MATLAB:bvpinit:bvpxtrp:SolInterval', msg);
end
solxtrp.x = sol.x;
solxtrp.y = sol.y;
if abs(anew - a) <= 100*eps*max(abs(anew),abs(a))
solxtrp.x(1) = anew;
else
S = Hermite(sol.x(1),sol.y(:,1),sol.yp(:,1),...
sol.x(2),sol.y(:,2),sol.yp(:,2),anew);
solxtrp.x = [anew solxtrp.x];
solxtrp.y = [S solxtrp.y];
end
if abs(bnew - b) <= 100*eps*max(abs(bnew),abs(b))
solxtrp.x(end) = bnew;
else
S = Hermite(sol.x(end-1),sol.y(:,end-1),sol.yp(:,end-1),...
sol.x(end),sol.y(:,end),sol.yp(:,end),bnew);
solxtrp.x = [solxtrp.x bnew];
solxtrp.y = [solxtrp.y S];
end
if ~isempty(parameters)
solxtrp.parameters = parameters;
elseif isfield(sol,'parameters')
solxtrp.parameters = sol.parameters;
end
%---------------------------------------------------------------------------
function S = Hermite(x1,y1,yp1,x2,y2,yp2,xi)
% Evaluate cubic Hermite interpolant at xi.
h = x2 - x1;
s = (xi - x1)/h;
A1 = (s - 1)^2 * (1 + 2*s);
A2 = (3 - 2*s)*s^2;
B1 = h*s*(s - 1)^2;
B2 = h*s^2 *(s - 1);
S = A1*y1 + A2*y2 + B1*yp1 + B2*yp2;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -