📄 brent.c
字号:
#include <math.h>
#include "nrutil.h"
#define ITMAX 100
#define CGOLD 0.3819660
#define ZEPS 1.0e-10
/*
Here ITMAX is the maximum allowed number of iterations; CGOLD is the golden ratio; ZEPS is
a small number that protects against trying to achieve fractional accuracy for a minimum that
happens to be exactly zero.
*/
#define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);
float brent(float ax, float bx, float cx, float (*f)(float), float tol,float *xmin)
/*
Given a function f, and given a bracketing triplet of abscissas ax, bx, cx (such that bx is
between ax and cx, and f(bx) is less than both f(ax) and f(cx)), this routine isolates
the minimum to a fractional precision of about tol using Brent’s method. The abscissa of
the minimum is returned as xmin, and the minimum function value is returned as brent, the
returned function value.
*/
{
int iter;
float a,b,d,etemp,fu,fv,fw,fx,p,q,r,tol1,tol2,u,v,w,x,xm;
float e=0.0; //This will be the distance moved on the step before last.
a=(ax < cx ? ax : cx); //a and b must be in ascending order,but input abscissas need not be.
b=(ax > cx ? ax : cx);
x=w=v=bx; //Initializations...
fw=fv=fx=(*f)(x);
for (iter=1;iter<=ITMAX;iter++)
{ //Main program loop.
xm=0.5*(a+b);
tol2=2.0*(tol1=tol*fabs(x)+ZEPS);
if (fabs(x-xm) <= (tol2-0.5*(b-a)))
{// Test for done here.
*xmin=x;
return fx;
}
if (fabs(e) > tol1)
{ //Construct a trial parabolic fit.
r=(x-w)*(fx-fv);
q=(x-v)*(fx-fw);
p=(x-v)*q-(x-w)*r;
q=2.0*(q-r);
if (q > 0.0) p = -p;
q=fabs(q);
etemp=e;
e=d;
if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))
d=CGOLD*(e=(x >= xm ? a-x : b-x));
/*
The above conditions determine the acceptability of the parabolic fit. Here we
take the golden section step into the larger of the two segments.
*/
else
{
d=p/q; //Take the parabolic step.
u=x+d;
if (u-a < tol2 || b-u < tol2)
d=SIGN(tol1,xm-x);
}
}
else
{
d=CGOLD*(e=(x >= xm ? a-x : b-x));
}
u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));
fu=(*f)(u);
//This is the one function evaluation per iteration.
if (fu <= fx)
{ //Now decide what to do with our function evaluation.
if (u >= x) a=x; else b=x;
SHFT(v,w,x,u) //Housekeeping follows:
SHFT(fv,fw,fx,fu)
}
else
{
if (u < x) a=u; else b=u;
if (fu <= fw || w == x)
{
v=w;
w=u;
fv=fw;
fw=fu;
}
else if (fu <= fv || v == x || v == w)
{
v=u;
fv=fu;
}
} //Done with housekeeping. Back for another iteration.
}
nrerror("Too many iterations in brent");
*xmin=x; //Never get here.
return fx;
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -