📄 dbrent.c
字号:
#include <math.h>
#include "nrutil.h"
#define ITMAX 100
#define ZEPS 1.0e-10
#define MOV3(a,b,c, d,e,f) (a)=(d);(b)=(e);(c)=(f);
float dbrent(float ax, float bx, float cx, float (*f)(float),
float (*df)(float), float tol, float *xmin)
/*
Given a function f and its derivative function df, and given a bracketing triplet of abscissas ax,
bx, cx [such that bx is between ax and cx, and f(bx) is less than both f(ax) and f(cx)],
this routine isolates the minimum to a fractional precision of about tol using a modification of
Brent’s method that uses derivatives. The abscissa of the minimum is returned as xmin, and
the minimum function value is returned as dbrent, the returned function value.
*/
{
int iter,ok1,ok2; //Will be used as flags for whether proposed steps are acceptable or not.
float a,b,d,d1,d2,du,dv,dw,dx,e=0.0;
float fu,fv,fw,fx,olde,tol1,tol2,u,u1,u2,v,w,x,xm;
//Comments following will point out only differences from the routine brent. Read that routine first.
a=(ax < cx ? ax : cx);
b=(ax > cx ? ax : cx);
x=w=v=bx;
fw=fv=fx=(*f)(x);
dw=dv=dx=(*df)(x);
/*All our housekeeping chores are doubled by the necessity of moving
derivative values around as well as function values.
*/
for (iter=1;iter<=ITMAX;iter++)
{
xm=0.5*(a+b);
tol1=tol*fabs(x)+ZEPS;
tol2=2.0*tol1;
if (fabs(x-xm) <= (tol2-0.5*(b-a)))
{
*xmin=x;
return fx;
}
if (fabs(e) > tol1)
{
d1=2.0*(b-a); //Initialize these d’s to an out-of-bracket value.
d2=d1;
if (dw != dx) d1=(w-x)*dx/(dx-dw); //Secant method with one point.
if (dv != dx) d2=(v-x)*dx/(dx-dv);// And the other.
/*
Which of these two estimates of d shall we take? We will insist that they be within
the bracket, and on the side pointed to by the derivative at x:
*/
u1=x+d1;
u2=x+d2;
ok1 = (a-u1)*(u1-b) > 0.0 && dx*d1 <= 0.0;
ok2 = (a-u2)*(u2-b) > 0.0 && dx*d2 <= 0.0;
olde=e;// Movement on the step before last.
e=d;
if (ok1 || ok2)
{ //Take only an acceptable d, and if both are acceptable, then take the smallest one.
if (ok1 && ok2)
d=(fabs(d1) < fabs(d2) ? d1 : d2);
else if (ok1)
d=d1;
else
d=d2;
if (fabs(d) <= fabs(0.5*olde))
{
u=x+d;
if (u-a < tol2 || b-u < tol2)
d=SIGN(tol1,xm-x);
}
else
{ //Bisect, not golden section.
d=0.5*(e=(dx >= 0.0 ? a-x : b-x));
//Decide which segment by the sign of the derivative.
}
}
else
{
d=0.5*(e=(dx >= 0.0 ? a-x : b-x));
}
}
else
{
d=0.5*(e=(dx >= 0.0 ? a-x : b-x));
}
if (fabs(d) >= tol1)
{
u=x+d;
fu=(*f)(u);
}
else
{
u=x+SIGN(tol1,d);
fu=(*f)(u);
if (fu > fx)
{ //If the minimum step in the downhill direction takes us uphill, then we are done.
*xmin=x;
return fx;
}
}
du=(*df)(u); //Now all the housekeeping, sigh.
if (fu <= fx)
{
if (u >= x) a=x; else b=x;
MOV3(v,fv,dv, w,fw,dw)
MOV3(w,fw,dw, x,fx,dx)
MOV3(x,fx,dx, u,fu,du)
}
else
{
if (u < x) a=u; else b=u;
if (fu <= fw || w == x)
{
MOV3(v,fv,dv, w,fw,dw)
MOV3(w,fw,dw, u,fu,du)
}
else if (fu < fv || v == x || v == w)
{
MOV3(v,fv,dv, u,fu,du)
}
}
}
nrerror("Too many iterations in routine dbrent");
return 0.0; //Never get here.
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -