⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 互相关函数.txt

📁 数字信号处理中的互相关计算程序,应用很广泛
💻 TXT
字号:
#include <math.h>
#define M_PI    3.14159265358979323846
#define FALSE	0
#define TRUE	1
#define BIG	1e10
#define SMALL	1e-10

typedef struct {
	float r, i;
} complex;



/* FAST CORRELATION OF X(0:L) AND Y(0:L).  FINDS RXY(0) THRU RXY(NMAX). */
/* L=LAST INDEX IN BOTH X AND Y.  MUST BE (POWER OF 2)+1 AND AT LEAST 5. */
/* ITYPE=TYPE OF CORRELATION=0 IF X AND Y ARE THE SAME VECTOR (AUTO- */
/*         CORRELATION), OR NOT 0 IF X AND Y ARE DIFFERENT VECTORS. */
/* NMAX=MAXIMUM LAG OF INTEREST IN THE CORRELATION FUNCTION. */
/* FFT LENGTH ,N, USED INTERNALLY, IS L-1. */
/* LET K=INDEX OF FIRST NONZERO SAMPLE IN Y(0)---Y(N-1).  THEN X(0) */
/*  到 X(N-1) MUST INCLUDE PADDING OF AT LEAST NMAX-K ZEROS. */
/* CORRELATION FUNCTION, RXY, REPLACES X(0) THRU X(NMAX). */
/* Y(0) THRU Y(L) IS REPLACED BY ITS FFT, COMPUTED USING SPFFTR. */
/* IERROR=0  NO ERROR DETECTED */
/*        1  L-1 NOT A POWER OF 2 */
/*        2  NMAX OUT OF RANGE */
/*        3  INADEQUATE ZERO  */


void spcorr(float *x, float *y, long *l, long *type, long *nmax, long *error)
/*
x:序列X;
y:序列Y;
l:序列X与序列Y的长度,不小5,且要为2的幂次方;
type:相关的类型,0:表示X与Y序列相同,其它值:X与Y序列不相同
nmax:相关的最大时延;
error:运行出错提示;0:无错;1:数据长度不是2的幂次方;2:时延超界;3:无足够零填充出错
*/

{
     long j, k, m, n;//n:FFT长度;k:序列Y中的首个非零样本的位置序号;在序列Y中必须最少包含有(nmax-k)零填充。
    complex cx;
    float test;

    n = *l - 1;
    if (*nmax < 0 || *nmax >= n)
    {
	*error = 2;
	return;
    }

    test = (float) n;
    test /= 2.0;

    while ((test - 2.0) > 0.0)
    {
	test /= 2.0;
    }

    if ((test - 2.0) == 0)
    {
	for (k = 0 ; k < n && y[k] == 0.0 ; ++k) ;

	for (j = n - 1 ; j >= 0 && x[j] == 0.0 ; --j) ;

	if ((n - 1 - j) < (*nmax - k))
	{
	    *error = 3;
	    return;
	}

	spfftr(x, &n);//对X序列FFT变换
	if (*type != 0)
	{
	    spfftr(y, &n);//如果X、Y是相同序列,则对Y序列也进行FFT
	}

	for (m = 0 ; m <= (n / 2) ; ++m)
	{
	    cx.r = x[m * 2] * y[m * 2] - -x[(m * 2) + 1] * y[(m * 2) + 1];
	    cx.i = x[m * 2] * y[(m * 2) + 1] + -x[(m * 2) + 1] * y[m * 2];

	    x[m * 2] = cx.r / n;
	    x[(m * 2) + 1] = cx.i / n;
	}

	spiftr(x, &n);

	*error = 0;
    }
    else if ((test - 2.0) < 0.0)
    {
	*error = 1;
    }

    return;
} /* spcorr */


/* SPFFTR     11/12/85 */
/* FFT ROUTINE FOR REAL TIME SERIES (X) WITH N=2**K SAMPLES. */
/* COMPUTATION IS IN PLACE, OUTPUT REPLACES INPUT. */
/* INPUT:  REAL VECTOR X(0:N+1) WITH REAL DATA SEQUENCE IN FIRST N */
/*         ELEMENTS; ANYTHING IN LAST 2.  NOTE: X MAY BE DECLARED */
/*         REAL IN MAIN PROGRAM PROVIDED THIS ROUTINE IS COMPILED  */
/*         SEPARATELY ... COMPLEX OUTPUT REPLACES REAL INPUT HERE. */
/* OUTPUT: COMPLEX VECTOR XX(O:N/2), SUCH THAT X(0)=REAL(XX(0)),X(1)= */
/*         IMAG(XX(0)), X(2)=REAL(XX(1)), ..., X(N+1)=IMAG(XX(N/2). */
/* IMPORTANT:  N MUST BE AT LEAST 4 AND MUST BE A POWER OF 2. */

//FFT计算函数
void spfftr(complex *x, long *n)
{
    /* Builtin functions */
    void r_cnjg();

    /* Local variables */
    void spfftc();

    long m, tmp_int;
    complex u, tmp, tmp_complex;
    float tpn, tmp_float;

    tpn = (float) (2.0 * M_PI / (double) *n);

    tmp_int = *n / 2;
    spfftc(x, &tmp_int, &neg_i1);

    x[*n / 2].r = x[0].r;
    x[*n / 2].i = x[0].i;

    for (m = 0 ; m <= (*n / 4) ; ++m)
    {
	u.r = (float) sin((double) m * tpn);
	u.i = (float) cos((double) m * tpn);

	r_cnjg(&tmp_complex, &x[*n / 2 - m]);

	tmp.r = (((1.0 + u.r) * x[m].r - u.i * x[m].i)
		+ (1.0 - u.r) * tmp_complex.r - -u.i * tmp_complex.i) / 2.0;

	tmp.i = (((1.0 + u.r) * x[m].i + u.i * x[m].r)
		+ (1.0 - u.r) * tmp_complex.i + -u.i * tmp_complex.r) / 2.0;

	tmp_float = ((1.0 - u.r) * x[m].r - -u.i * x[m].i
		    + (1.0 + u.r) * tmp_complex.r - u.i * tmp_complex.i) / 2.0;
	x[m].i = ((1.0 - u.r) * x[m].i + -u.i * x[m].r
		 + (1.0 + u.r) * tmp_complex.i + u.i * tmp_complex.r) / 2.0;
	x[m].r = tmp_float;

	r_cnjg(&x[*n / 2 - m], &tmp);
    }

    return;
} /* spfftr */


/* SPIFTR     02/20/87 */
/* INVERSE FFT OF THE COMPLEX SPECTRUM OF A REAL TIME SERIES. */
/* X AND N ARE THE SAME AS IN SPFFTR.  IMPORTANT: N MUST BE A POWER */
/* OF 2 AND X MUST BE DIMENSIONED X(0:N+1) (REAL ARRAY, NOT COMPLEX). */
/* THIS ROUTINE TRANSFORMS THE OUTPUT OF SPFFTR BACK INTO THE INPUT, */
/* SCALED BY N.  COMPUTATION IS IN PLACE, AS IN SPFFTR. */

//逆FFT变换函数
void spiftr(complex *x, long *n)
{
    long m, tmp_int;
    complex u, tmp_complex, tmp;
    float tpn, tmp_float;

    tpn = (float) (2.0 * M_PI / (double) *n);

    for (m = 0 ; m <= (*n / 4) ; ++m)
    {
	u.r = (float) sin((double) m * tpn);
	u.i = (float) -cos((double) m * tpn);

	r_cnjg(&tmp_complex, &x[*n / 2 - m]);


	tmp.r = ((1.0 + u.r) * x[m].r - u.i * x[m].i)
		+ ((1.0 - u.r) * tmp_complex.r - -u.i * tmp_complex.i);
	tmp.i = ((1.0 + u.r) * x[m].i + u.i * x[m].r)
		+ ((1.0 - u.r) * tmp_complex.i + -u.i * tmp_complex.r);

	r_cnjg(&tmp_complex, &x[*n / 2 - m]);

	tmp_float = ((1.0 - u.r) * x[m].r - -u.i * x[m].i)
		    + ((1.0 + u.r) * tmp_complex.r - u.i * tmp_complex.i);
	x[m].i = ((1.0 - u.r) * x[m].i + -u.i * x[m].r)
		+ ((1.0 + u.r) * tmp_complex.i + u.i * tmp_complex.r);

	x[m].r = tmp_float;

	r_cnjg(&x[*n / 2 - m], &tmp);
    }
    tmp_int = *n / 2;

    spfftc(x, &tmp_int, &pos_i1);

    return;
} /* spiftr *



void r_cnjg(complex *r, complex *z)
{
    r->r = z->r;
    r->i = -z->i;
}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -