📄 index.html
字号:
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=gb2312">
<meta name="GENERATOR" content="Microsoft FrontPage 4.0">
<meta name="ProgId" content="FrontPage.Editor.Document">
<title>Aimed at any serious programmer or computer science student</title>
</head>
<body>
<h1 align="center"><img border="0" src=".\Introduction to Algorithms\clrs.jpg" align="left" width="201" height="238">算法导论</h1>
<h1 align="center">Introduction to Algorithms(MIT教材)</h1>
<h1 align="center"><A HREF=".\Introduction to Algorithms\book6\toc.htm">学习网页</A></h1>
<p><span class="serif">本书自第一版出版以来,已经成为世界范围内广泛使用的大学教材和专业人员的标准参考手册。本书全面论述了算法的内容,从一定深度上涵盖了算法的诸多方面,同时其讲授和分析方法又兼顾了各个层次读者的接受能力。各章内容自成体系,可作为独立单元学习。所有算法都用英文和伪码描述,使具备初步编程经验的人也可读懂。全书讲解通俗易懂,且不失深度和数学上的严谨性。</span>
<span class="serif">
<p></p>
<p><b>Topics covered:</b> Overview of algorithms (including algorithms as a
technology); designing and analyzing algorithms; asymptotic notation;
recurrences and recursion; probabilistic analysis and randomized algorithms;
heapsort algorithms; priority queues; quicksort algorithms; linear time sorting
(including radix and bucket sort); medians and order statistics (including
minimum and maximum); introduction to data structures (stacks, queues, linked
lists, and rooted trees); hash tables (including hash functions); binary search
trees; red-black trees; augmenting data structures for custom applications;
dynamic programming explained (including assembly-line scheduling, matrix-chain
multiplication, and optimal binary search trees); greedy algorithms (including
Huffman codes and task-scheduling problems); amortized analysis (the accounting
and potential methods); advanced data structures (including B-trees, binomial
and Fibonacci heaps, representing disjoint sets in data structures); graph
algorithms (representing graphs, minimum spanning trees, single-source shortest
paths, all-pairs shortest paths, and maximum flow algorithms); sorting networks;
matrix operations; linear programming (standard and slack forms); polynomials
and the Fast Fourier Transformation (FFT); number theoretic algorithms
(including greatest common divisor, modular arithmetic, the Chinese remainder
theorem, RSA public-key encryption, primality testing, integer factorization);
string matching; computational geometry (including finding the convex hull);
NP-completeness (including sample real-world NP-complete problems and their
insolvability); approximation algorithms for NP-complete problems (including the
traveling salesman problem); reference sections for summations and other
mathematical notation, sets, relations, functions, graphs and trees, as well as
counting and probability backgrounder (plus geometric and binomial
distributions).</span></p>
</body>
</html>
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -