📄 nnd12rp.m
字号:
function nnd12rp(cmd,arg1)
%NND12RP Resilient backpropagation demonstration.
%
% This demonstration requires the Neural Network Toolbox.
% First Version, 7-25-96.
%==================================================================
% Constants for RPROP
delt0 = 1; % Initial step size;
deltmax = 50; % Maximum step size;
etapos = 1.1; % factor for increasing step size;
etaneg = 0.8; % factor for decreasing step size;
% CONSTANTS
me = 'nnd12rp';
max_epoch = 50;
max_t = 0.5;
w_max = 10;
p_max = 2;
circle_size = 6;
% FLAGS
change_func = 0;
% DEFAULTS
if nargin == 0, cmd = ''; else cmd = lower(cmd); end
% FIND WINDOW IF IT EXISTS
fig = nnfgflag(me);
if length(get(fig,'children')) == 0, fig = 0; end
% GET WINDOW DATA IF IT EXISTS
if fig
H = get(fig,'userdata');
fig_axis = H(1); % window axis
desc_text = H(2); % handle to first line of text sequence
cont_axis = H(3); % error contour axis
cont_ptr = H(4); % pointer to error contour handles
radios = H(5:7); % radio buttons
option_ptr = H(8); % index of active radio
path_ptr = H(9); % pointer to training path handles
end
%==================================================================
% Activate the window.
%
% ME() or ME('')
%==================================================================
if strcmp(cmd,'')
if fig
figure(fig)
set(fig,'visible','on')
else
feval(me,'init')
end
%==================================================================
% Close the window.
%
% ME() or ME('')
%==================================================================
elseif strcmp(cmd,'close') & (fig)
delete(fig)
%==================================================================
% Initialize the window.
%
% ME('init')
%==================================================================
elseif strcmp(cmd,'init') & (~fig)
% CHECK FOR NNT
if ~nntexist(me), return, end
% CONSTANTS
W1 = [10; 10];
b1 = [-5;5];
W2 = [1 1];
b2 = [-1];
P = -2:0.1:2;
T = logsig(W2*logsig(W1*P,b1),b2);
% NEW DEMO FIGURE
fig = nndemof2(me,'DESIGN','Resilient Backpropagation','','Chapter 12');
set(fig, ...
'windowbuttondownfcn',nncallbk(me,'down'), ...
'BackingStore','off',...
'nextplot','add');
H = get(fig,'userdata');
fig_axis = H(1);
desc_text = H(2);
% ICON
nndicon(12,458,363,'shadow')
% RADIO BUTTONS
option = 1;
radio1 = uicontrol(...
'units','points',...
'position',[20 335 130 20],...
'style','radio',...
'string','W1(1,1), W2(1,1)',...
'back',nnltgray,...
'callback',[me '(''radio'',1)'],...
'value',1);
radio2 = uicontrol(...
'units','points',...
'position',[155 335 115 20],...
'style','radio',...
'string','W1(1,1), b1(1)',...
'back',nnltgray,...
'callback',[me '(''radio'',2)']);
radio3 = uicontrol(...
'units','points',...
'position',[270 335 105 20],...
'style','radio',...
'string','b1(1), b1(2)',...
'back',nnltgray,...
'callback',[me '(''radio'',3)']);
% ERROR SURFACE
load nndbp1
cont_axis = nnsfo('a2','',v1,v2,'');
set(cont_axis, ...
'units','points',...
'position',[50 40 280 280],...
'color',nnltyell,...
'xlim',range1,...
'ylim',range2,...
'colororder',[0 0 0])
[dummy,cont_h] = contour(x2,y2,E2,levels);
set(cont_h,'erasemode','none');
plot3(range1([1 2 2 1 1]),range2([1 1 2 2 1]),1000*ones(1,5),...
'color',nndkblue);
cont_h2 = plot(optx,opty,'+','color',nnred);
cont_h = [cont_h; cont_h2];
view(2)
% BUTTONS
uicontrol(...
'units','points',...
'position',[400 110 60 20],...
'string','Contents',...
'callback','nndtoc')
uicontrol(...
'units','points',...
'position',[400 75 60 20],...
'string','Close',...
'callback',[me '(''close'')'])
% DATA POINTERS
cont_ptr = uicontrol('visible','off','userdata',cont_h);
option_ptr = uicontrol('visible','off','userdata',option);
path_ptr = uicontrol('visible','off','userdata',[]);
% SAVE WINDOW DATA AND LOCK
H = [fig_axis desc_text cont_axis cont_ptr ...
radio1 radio2 radio3 option_ptr path_ptr];
set(fig,'userdata',H,'nextplot','new')
% INSTRUCTION TEXT
feval(me,'instr');
% LOCK WINDOW
set(fig,'nextplot','new','color',nnltgray);
nnchkfs;
%==================================================================
% Display the instructions.
%
% ME('instr')
%==================================================================
elseif strcmp(cmd,'instr') & (fig)
nnsettxt(desc_text,...
'Use the radio buttons',...
'to select the network',...
'parameters to train',...
'with backpropagation.',...
'',...
'The corresponding',...
'contour plot is',...
'shown to the left.',...
'',...
'Click in the contour',...
'graph to start the',...
'conjugate gradient',...
'learning algorithm.')
%==================================================================
% Respond to radio buttons.
%
% ME('radio',i)
%==================================================================
elseif strcmp(cmd,'radio') & (fig) & (nargin == 2)
% GET DATA
option = get(option_ptr,'userdata');
% ALTER TRAINABLE PARAMETERS
if (arg1 ~= option)
% HIGHLIGHT NEW RADIO BUTTON
set(radios(option),'value',0)
set(radios(arg1),'value',1)
option = arg1;
% CLEAR AXES
delete(get(cont_axis,'children'))
% CONSTANTS
W1 = [10; 10];
b1 = [-5;5];
W2 = [1 1];
b2 = [-1];
P = -2:0.1:2;
T = logsig(W2*logsig(W1*P,b1),b2);
% ERROR SURFACE & VARIABLE NAMES
if option == 1
load nndbp1
elseif option == 2
load nndbp2
else
load nndbp3
end
set(fig,'nextplot','add')
axes(cont_axis)
set(get(cont_axis,'xlabel'),'string',v1)
set(get(cont_axis,'ylabel'),'string',v2)
set(cont_axis,'xlim',range1,'ylim',range2)
[dummy,cont_h] = contour(x2,y2,E2,levels);
set(cont_h,'erasemode','none');
plot3(range1([1 2 2 1 1]),range2([1 1 2 2 1]),1000*ones(1,5),...
'color',nndkblue);
cont_h2 = plot(optx,opty,'+','color',nnred);
cont_h = [cont_h; cont_h2];
view(2)
% STORE DATA
set(cont_ptr,'userdata',cont_h);
set(path_ptr,'userdata',[]);
set(option_ptr,'userdata',option);
end
%==================================================================
% Respond to mouse down.
%
% ME('down')
%==================================================================
elseif strcmp(cmd,'down') & (fig) & (nargin == 1)
pt = get(cont_axis,'currentpoint');
x = pt(1);
y = pt(3);
xlim = get(cont_axis,'xlim');
ylim = get(cont_axis,'ylim');
if (x > xlim(1) & x < xlim(2) & y > ylim(1) & y < ylim(2))
% GET DATA
option = get(option_ptr,'userdata');
path = get(path_ptr,'userdata');
cont_h = get(cont_ptr,'userdata');
% REMOVE PREVIOUS PATH
set(fig,'nextplot','add')
set(path,'erasemode','normal');
delete(path);
% INITIAL VALUES
W1 = [10; 10];
b1 = [-5;5];
W2 = [1 1];
b2 = [-1];
P = -2:0.1:2;
T = logsig(W2*logsig(W1*P,b1),b2);
% PLOT START POINT
dkblue = nndkblue;
red = nnred;
axes(cont_axis);
path = [...
plot(x,y,'o','color',dkblue,'markersize',8,'erasemode','none');
plot(x,y,'o','color',[1 1 1],'markersize',10,'erasemode','none');
plot(x,y,'o','color',dkblue,'markersize',12,'erasemode','none')];
drawnow
% PLOT PATH
set(fig,'pointer','watch')
% INITIALIZE TRAINING
Lx = x;
Ly = y;
if option == 1
W1(1,1) = x;
W2(1,1) = y;
elseif option == 2
W1(1,1) = x;
b1(1) = y;
else
b1(1) = x;
b1(2) = y;
end
%--
deltW = [0;0];
W = [x;y];
deltMAX = [deltmax;deltmax];
% MAIN LOOP
xx = [x zeros(1,max_epoch)];
yy = [y zeros(1,max_epoch)];
for i=2:(max_epoch+1)
% CALCULATE GRADIENT
A1 = logsig(W1*P,b1);
A2 = logsig(W2*A1,b2);
E = T-A2;
D2 = feval('deltalog',A2,E);
D1 = feval('deltalog',A1,D2,W2);
[gW1,gb1] = feval('learnbp',P,D1,1);
[gW2,gb2] = feval('learnbp',A1,D2,1);
if (option == 1)
dW = [gW1(1,1);gW2(1,1)];
elseif(option == 2)
dW = [gW1(1,1);gb1(1)];
else
dW = [gb1(1);gb1(2)];
end
% RPROP calculation of changes to W and B
sig = sign(dW.*deltW);
delt = ((sig>0).*etapos + (sig<0).*etaneg + (sig==0)).*abs(deltW);
delt = min(delt,deltMAX) + delt0.*(deltW==0);
deltW = delt.*(sign(dW));
% Update weights and biases
W = W + deltW;
% UPDATE VARIABLES
if (option == 1)
W1(1,1) = W(1);
W2(1,1) = W(2);
elseif(option == 2)
W1(1,1) = W(1);
b1(1) = W(2);
else
b1(1) = W(1);
b1(2) = W(2);
end
xx(i) = W(1);
yy(i) = W(2);
end
% CONTOUR PLOT
path = [path; plot(xx,yy,'color',nnred);
plot(xx,yy,'o','color',nnred,'markersize',6)];
set(fig,'nextplot','new')
% SAVE DATA
set(path_ptr,'userdata',path);
set(fig,'pointer','arrow')
end
end
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -