📄 contents.m
字号:
% Neural Network Design Demonstrations.
% Copyright (c) 1994 by PWS Publishing Company.
%
% General
% nnd - Splash screen.
% nndtoc - Table of contents.
% nnsound - Turn Neural Network Design sounds on and off.
% poslin - Positive linear tranfer function.
%
% Chapter 2, Neuron Model and Network Architectures
% nnd2n1 - One-input neuron demonstration.+
% nnd2n2 - Two-input neuron demonstration.+
%
% Chapter 3, An Illustrative Example
% nnd3pc - Perceptron classification demonstration.+
% nnd3hamc - Hamming classification demonstration.+
% nnd3hopc - Hopfield classification demonstration.+
%
% Chapter 4, Perceptron Learning Rule
% nnd4db - Decision boundaries demonstration.+
% nnd4pr - Perceptron rule demonstration.+
%
% Chapter 5, Signal and Weight Vector Spaces
% nnd5gs - Gram-Schmidt demonstration.
% nnd5rb - Reciprocal basis demonstration.
%
% Chapter 6, Linear Transformations for Neural Networks
% nnd6lt - Linear transformations demonstration.
% nnd6eg - Eigenvector game.
%
% Chapter 7, Supervised Hebbian Learning
% nnd7sh - Supervised Hebb demonstration.
%
% Chapter 8, Performance Surfaces and Optimum Points
% nnd8ts1 - Taylor series demonstration #1.
% nnd8ts2 - Taylor series demonstration #2.
% nnd8dd - Directional derivatives demonstration.
% nnd8qf - Quadratic function demonstration.
%
% Chapter 9, Performance Optimization
% nnd9sdq - Steepest descent for quadratic function demonstration.
% nnd9mc - Method comparison demonstration.
% nnd9nm - Newton's method demonstration.
% nnd9sd - Steepest descent demonstration.
%
% Chapter 10, Widrow-Hoff Learning
% nnd10nc - Adaptive noise cancellation demonstration.+
% nnd10eeg - Electroencephelogram noise cancellation demonstration.+
% nnd10lc - Linear pattern classification demonstration.+
%
% Chapter 11, Backpropagation
% nnd11nf - Network function demonstration.+
% nnd11bc - Backpropagation calculation demonstration.*
% nnd11fa - Function approximation demonstration.*
% nnd11gn - Generalization demonstration.*
%
% Chapter 12, Variations on Backpropagation
% nnd12sd1 - Steepest descent backpropagation demonstration #1.*
% nnd12sd2 - Steepest descent backpropagation demonstration #2.*
% nnd12mo - Momentum backpropagation demonstration.*
% nnd12vl - Variable learning rate backpropagation demonstration.*
% nnd12ls - Conjugate gradient line search demonstration.*
% nnd12cg - Conjugate gradient backpropagation demonstration.*
% nnd12ms - Maquardt step demonstration.*
% nnd12m - Marquardt backpropagation demonstration.*
%
% Chapter 13, Associative Learning
% nnd13uh - Unsupervised Hebb demonstration.+
% nnd13edr - Effects of decay rate demonstration.+
% nnd13hd - Hebb with decay demonstration.+
% nnd13gis - Graphical instar demonstration.+
% nnd13is - Instar demonstration.+
% nnd13os - Outstar demonstration.+
%
% Chapter 14, Competitive Networks
% nnd14cc - Competitive classification demonstration.+
% nnd14cl - Competitive learning demonstration.+
% nnd14fm1 - 1-D Feature map demonstration.*
% nnd14fm2 - 2-D Feature map demonstration.*
% nnd14lv1 - LVQ1 demonstration.*
% nnd14lv2 - LVQ2 demonstration.*
%
% Chapter 15, Grossberg Network
% nnd15li - Leaky integrator demonstration.
% nnd15sn - Shunting network demonstration.
% nnd15gl1 - Grossberg layer 1 demonstration.
% nnd15gl2 - Grossberg layer 2 demonstration.
% nnd15aw - Adaptive weights demonstration.
%
% Chapter 16, Adaptive Resonance Theory
% nnd16al1 - ART1 layer 1 demonstration.
% nnd16al2 - ART1 layer 2 demonstration.
% nnd16os - Orienting subsystem demonstration.
% nnd16a1 - ART1 algorithm demonstration.
%
% Chapter 17, Stability
% nnd17ds - Dynamical system demonstration.
%
% Chapter 18, Hopfield Network
% nnd18hn - Hopfield network demonstration.
%
% + Requires MININNET functions or the Neural Network Toolbox.
% * Requires the Neural Network Toolbox.
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -