📄 cbrt.c
字号:
/* cbrt.c * * Cube root * * * * SYNOPSIS: * * double x, y, cbrt(); * * y = cbrt( x ); * * * * DESCRIPTION: * * Returns the cube root of the argument, which may be negative. * * Range reduction involves determining the power of 2 of * the argument. A polynomial of degree 2 applied to the * mantissa, and multiplication by the cube root of 1, 2, or 4 * approximates the root to within about 0.1%. Then Newton's * iteration is used three times to converge to an accurate * result. * * * * ACCURACY: * * Relative error: * arithmetic domain # trials peak rms * DEC -10,10 200000 1.8e-17 6.2e-18 * IEEE 0,1e308 30000 1.5e-16 5.0e-17 * *//* cbrt.c *//*Cephes Math Library Release 2.8: June, 2000Copyright 1984, 1991, 2000 by Stephen L. Moshier*/#include <math.h>static double CBRT2 = 1.2599210498948731647672;static double CBRT4 = 1.5874010519681994747517;static double CBRT2I = 0.79370052598409973737585;static double CBRT4I = 0.62996052494743658238361;#ifdef ANSIPROTextern double frexp ( double, int * );extern double ldexp ( double, int );extern int isnan ( double );extern int isfinite ( double );#elsedouble frexp(), ldexp();int isnan(), isfinite();#endifdouble cbrt(x)double x;{int e, rem, sign;double z;#ifdef NANSif( isnan(x) ) return x;#endif#ifdef INFINITIESif( !isfinite(x) ) return x;#endifif( x == 0 ) return( x );if( x > 0 ) sign = 1;else { sign = -1; x = -x; }z = x;/* extract power of 2, leaving * mantissa between 0.5 and 1 */x = frexp( x, &e );/* Approximate cube root of number between .5 and 1, * peak relative error = 9.2e-6 */x = (((-1.3466110473359520655053e-1 * x + 5.4664601366395524503440e-1) * x - 9.5438224771509446525043e-1) * x + 1.1399983354717293273738e0 ) * x + 4.0238979564544752126924e-1;/* exponent divided by 3 */if( e >= 0 ) { rem = e; e /= 3; rem -= 3*e; if( rem == 1 ) x *= CBRT2; else if( rem == 2 ) x *= CBRT4; }/* argument less than 1 */else { e = -e; rem = e; e /= 3; rem -= 3*e; if( rem == 1 ) x *= CBRT2I; else if( rem == 2 ) x *= CBRT4I; e = -e; }/* multiply by power of 2 */x = ldexp( x, e );/* Newton iteration */x -= ( x - (z/(x*x)) )*0.33333333333333333333;#ifdef DECx -= ( x - (z/(x*x)) )/3.0;#elsex -= ( x - (z/(x*x)) )*0.33333333333333333333;#endifif( sign < 0 ) x = -x;return(x);}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -