📄 incbet.c
字号:
/* incbet.c * * Incomplete beta integral * * * SYNOPSIS: * * double a, b, x, y, incbet(); * * y = incbet( a, b, x ); * * * DESCRIPTION: * * Returns incomplete beta integral of the arguments, evaluated * from zero to x. The function is defined as * * x * - - * | (a+b) | | a-1 b-1 * ----------- | t (1-t) dt. * - - | | * | (a) | (b) - * 0 * * The domain of definition is 0 <= x <= 1. In this * implementation a and b are restricted to positive values. * The integral from x to 1 may be obtained by the symmetry * relation * * 1 - incbet( a, b, x ) = incbet( b, a, 1-x ). * * The integral is evaluated by a continued fraction expansion * or, when b*x is small, by a power series. * * ACCURACY: * * Tested at uniformly distributed random points (a,b,x) with a and b * in "domain" and x between 0 and 1. * Relative error * arithmetic domain # trials peak rms * IEEE 0,5 10000 6.9e-15 4.5e-16 * IEEE 0,85 250000 2.2e-13 1.7e-14 * IEEE 0,1000 30000 5.3e-12 6.3e-13 * IEEE 0,10000 250000 9.3e-11 7.1e-12 * IEEE 0,100000 10000 8.7e-10 4.8e-11 * Outputs smaller than the IEEE gradual underflow threshold * were excluded from these statistics. * * ERROR MESSAGES: * message condition value returned * incbet domain x<0, x>1 0.0 * incbet underflow 0.0 *//*Cephes Math Library, Release 2.8: June, 2000Copyright 1984, 1995, 2000 by Stephen L. Moshier*/#include <math.h>#ifdef DEC#define MAXGAM 34.84425627277176174#else#define MAXGAM 171.624376956302725#endifextern double MACHEP, MINLOG, MAXLOG;#ifdef ANSIPROTextern double gamma ( double );extern double lgam ( double );extern double exp ( double );extern double log ( double );extern double pow ( double, double );extern double fabs ( double );static double incbcf(double, double, double);static double incbd(double, double, double);static double pseries(double, double, double);#elsedouble gamma(), lgam(), exp(), log(), pow(), fabs();static double incbcf(), incbd(), pseries();#endifstatic double big = 4.503599627370496e15;static double biginv = 2.22044604925031308085e-16;double incbet( aa, bb, xx )double aa, bb, xx;{double a, b, t, x, xc, w, y;int flag;if( aa <= 0.0 || bb <= 0.0 ) goto domerr;if( (xx <= 0.0) || ( xx >= 1.0) ) { if( xx == 0.0 ) return(0.0); if( xx == 1.0 ) return( 1.0 );domerr: mtherr( "incbet", DOMAIN ); return( 0.0 ); }flag = 0;if( (bb * xx) <= 1.0 && xx <= 0.95) { t = pseries(aa, bb, xx); goto done; }w = 1.0 - xx;/* Reverse a and b if x is greater than the mean. */if( xx > (aa/(aa+bb)) ) { flag = 1; a = bb; b = aa; xc = xx; x = w; }else { a = aa; b = bb; xc = w; x = xx; }if( flag == 1 && (b * x) <= 1.0 && x <= 0.95) { t = pseries(a, b, x); goto done; }/* Choose expansion for better convergence. */y = x * (a+b-2.0) - (a-1.0);if( y < 0.0 ) w = incbcf( a, b, x );else w = incbd( a, b, x ) / xc;/* Multiply w by the factor a b _ _ _ x (1-x) | (a+b) / ( a | (a) | (b) ) . */y = a * log(x);t = b * log(xc);if( (a+b) < MAXGAM && fabs(y) < MAXLOG && fabs(t) < MAXLOG ) { t = pow(xc,b); t *= pow(x,a); t /= a; t *= w; t *= gamma(a+b) / (gamma(a) * gamma(b)); goto done; }/* Resort to logarithms. */y += t + lgam(a+b) - lgam(a) - lgam(b);y += log(w/a);if( y < MINLOG ) t = 0.0;else t = exp(y);done:if( flag == 1 ) { if( t <= MACHEP ) t = 1.0 - MACHEP; else t = 1.0 - t; }return( t );}/* Continued fraction expansion #1 * for incomplete beta integral */static double incbcf( a, b, x )double a, b, x;{double xk, pk, pkm1, pkm2, qk, qkm1, qkm2;double k1, k2, k3, k4, k5, k6, k7, k8;double r, t, ans, thresh;int n;k1 = a;k2 = a + b;k3 = a;k4 = a + 1.0;k5 = 1.0;k6 = b - 1.0;k7 = k4;k8 = a + 2.0;pkm2 = 0.0;qkm2 = 1.0;pkm1 = 1.0;qkm1 = 1.0;ans = 1.0;r = 1.0;n = 0;thresh = 3.0 * MACHEP;do { xk = -( x * k1 * k2 )/( k3 * k4 ); pk = pkm1 + pkm2 * xk; qk = qkm1 + qkm2 * xk; pkm2 = pkm1; pkm1 = pk; qkm2 = qkm1; qkm1 = qk; xk = ( x * k5 * k6 )/( k7 * k8 ); pk = pkm1 + pkm2 * xk; qk = qkm1 + qkm2 * xk; pkm2 = pkm1; pkm1 = pk; qkm2 = qkm1; qkm1 = qk; if( qk != 0 ) r = pk/qk; if( r != 0 ) { t = fabs( (ans - r)/r ); ans = r; } else t = 1.0; if( t < thresh ) goto cdone; k1 += 1.0; k2 += 1.0; k3 += 2.0; k4 += 2.0; k5 += 1.0; k6 -= 1.0; k7 += 2.0; k8 += 2.0; if( (fabs(qk) + fabs(pk)) > big ) { pkm2 *= biginv; pkm1 *= biginv; qkm2 *= biginv; qkm1 *= biginv; } if( (fabs(qk) < biginv) || (fabs(pk) < biginv) ) { pkm2 *= big; pkm1 *= big; qkm2 *= big; qkm1 *= big; } }while( ++n < 300 );cdone:return(ans);}/* Continued fraction expansion #2 * for incomplete beta integral */static double incbd( a, b, x )double a, b, x;{double xk, pk, pkm1, pkm2, qk, qkm1, qkm2;double k1, k2, k3, k4, k5, k6, k7, k8;double r, t, ans, z, thresh;int n;k1 = a;k2 = b - 1.0;k3 = a;k4 = a + 1.0;k5 = 1.0;k6 = a + b;k7 = a + 1.0;;k8 = a + 2.0;pkm2 = 0.0;qkm2 = 1.0;pkm1 = 1.0;qkm1 = 1.0;z = x / (1.0-x);ans = 1.0;r = 1.0;n = 0;thresh = 3.0 * MACHEP;do { xk = -( z * k1 * k2 )/( k3 * k4 ); pk = pkm1 + pkm2 * xk; qk = qkm1 + qkm2 * xk; pkm2 = pkm1; pkm1 = pk; qkm2 = qkm1; qkm1 = qk; xk = ( z * k5 * k6 )/( k7 * k8 ); pk = pkm1 + pkm2 * xk; qk = qkm1 + qkm2 * xk; pkm2 = pkm1; pkm1 = pk; qkm2 = qkm1; qkm1 = qk; if( qk != 0 ) r = pk/qk; if( r != 0 ) { t = fabs( (ans - r)/r ); ans = r; } else t = 1.0; if( t < thresh ) goto cdone; k1 += 1.0; k2 -= 1.0; k3 += 2.0; k4 += 2.0; k5 += 1.0; k6 += 1.0; k7 += 2.0; k8 += 2.0; if( (fabs(qk) + fabs(pk)) > big ) { pkm2 *= biginv; pkm1 *= biginv; qkm2 *= biginv; qkm1 *= biginv; } if( (fabs(qk) < biginv) || (fabs(pk) < biginv) ) { pkm2 *= big; pkm1 *= big; qkm2 *= big; qkm1 *= big; } }while( ++n < 300 );cdone:return(ans);}/* Power series for incomplete beta integral. Use when b*x is small and x not too close to 1. */static double pseries( a, b, x )double a, b, x;{double s, t, u, v, n, t1, z, ai;ai = 1.0 / a;u = (1.0 - b) * x;v = u / (a + 1.0);t1 = v;t = u;n = 2.0;s = 0.0;z = MACHEP * ai;while( fabs(v) > z ) { u = (n - b) * x / n; t *= u; v = t / (a + n); s += v; n += 1.0; }s += t1;s += ai;u = a * log(x);if( (a+b) < MAXGAM && fabs(u) < MAXLOG ) { t = gamma(a+b)/(gamma(a)*gamma(b)); s = s * t * pow(x,a); }else { t = lgam(a+b) - lgam(a) - lgam(b) + u + log(s); if( t < MINLOG ) s = 0.0; else s = exp(t); }return(s);}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -