⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 k1.c

📁 linux下用PCMCIA无线网卡虚拟无线AP的程序源码
💻 C
字号:
/*							k1.c * *	Modified Bessel function, third kind, order one * * * * SYNOPSIS: * * double x, y, k1(); * * y = k1( x ); * * * * DESCRIPTION: * * Computes the modified Bessel function of the third kind * of order one of the argument. * * The range is partitioned into the two intervals [0,2] and * (2, infinity).  Chebyshev polynomial expansions are employed * in each interval. * * * * ACCURACY: * *                      Relative error: * arithmetic   domain     # trials      peak         rms *    DEC       0, 30        3300       8.9e-17     2.2e-17 *    IEEE      0, 30       30000       1.2e-15     1.6e-16 * * ERROR MESSAGES: * *   message         condition      value returned * k1 domain          x <= 0          MAXNUM * *//*							k1e.c * *	Modified Bessel function, third kind, order one, *	exponentially scaled * * * * SYNOPSIS: * * double x, y, k1e(); * * y = k1e( x ); * * * * DESCRIPTION: * * Returns exponentially scaled modified Bessel function * of the third kind of order one of the argument: * *      k1e(x) = exp(x) * k1(x). * * * * ACCURACY: * *                      Relative error: * arithmetic   domain     # trials      peak         rms *    IEEE      0, 30       30000       7.8e-16     1.2e-16 * See k1(). * *//*Cephes Math Library Release 2.8:  June, 2000Copyright 1984, 1987, 2000 by Stephen L. Moshier*/#include <math.h>/* Chebyshev coefficients for x(K1(x) - log(x/2) I1(x)) * in the interval [0,2]. *  * lim(x->0){ x(K1(x) - log(x/2) I1(x)) } = 1. */#ifdef UNKstatic double A[] ={-7.02386347938628759343E-18,-2.42744985051936593393E-15,-6.66690169419932900609E-13,-1.41148839263352776110E-10,-2.21338763073472585583E-8,-2.43340614156596823496E-6,-1.73028895751305206302E-4,-6.97572385963986435018E-3,-1.22611180822657148235E-1,-3.53155960776544875667E-1, 1.52530022733894777053E0};#endif#ifdef DECstatic unsigned short A[] = {0122001,0110501,0164746,0151255,0124056,0165213,0150034,0147377,0126073,0124026,0167207,0001044,0130033,0030735,0141061,0033116,0131676,0020350,0121341,0107175,0133443,0046631,0062031,0070716,0135065,0067427,0026435,0164022,0136344,0112234,0165752,0006222,0137373,0015622,0017016,0155636,0137664,0150333,0125730,0067240,0040303,0036411,0130200,0043120};#endif#ifdef IBMPCstatic unsigned short A[] = {0xda56,0x3d3c,0x3228,0xbc60,0x99e0,0x7a03,0xdd51,0xbce5,0xe045,0xddd0,0x7502,0xbd67,0x26ca,0xb846,0x663b,0xbde3,0x31d0,0x145c,0xc41d,0xbe57,0x2e3a,0x2c83,0x69b3,0xbec4,0xbd02,0xe5a3,0xade2,0xbf26,0x4192,0x9d7d,0x9293,0xbf7c,0xdb74,0x43c1,0x6372,0xbfbf,0x0dd4,0x757b,0x9a1b,0xbfd6,0x08ca,0x3610,0x67a1,0x3ff8};#endif#ifdef MIEEEstatic unsigned short A[] = {0xbc60,0x3228,0x3d3c,0xda56,0xbce5,0xdd51,0x7a03,0x99e0,0xbd67,0x7502,0xddd0,0xe045,0xbde3,0x663b,0xb846,0x26ca,0xbe57,0xc41d,0x145c,0x31d0,0xbec4,0x69b3,0x2c83,0x2e3a,0xbf26,0xade2,0xe5a3,0xbd02,0xbf7c,0x9293,0x9d7d,0x4192,0xbfbf,0x6372,0x43c1,0xdb74,0xbfd6,0x9a1b,0x757b,0x0dd4,0x3ff8,0x67a1,0x3610,0x08ca};#endif/* Chebyshev coefficients for exp(x) sqrt(x) K1(x) * in the interval [2,infinity]. * * lim(x->inf){ exp(x) sqrt(x) K1(x) } = sqrt(pi/2). */#ifdef UNKstatic double B[] ={-5.75674448366501715755E-18, 1.79405087314755922667E-17,-5.68946255844285935196E-17, 1.83809354436663880070E-16,-6.05704724837331885336E-16, 2.03870316562433424052E-15,-7.01983709041831346144E-15, 2.47715442448130437068E-14,-8.97670518232499435011E-14, 3.34841966607842919884E-13,-1.28917396095102890680E-12, 5.13963967348173025100E-12,-2.12996783842756842877E-11, 9.21831518760500529508E-11,-4.19035475934189648750E-10, 2.01504975519703286596E-9,-1.03457624656780970260E-8, 5.74108412545004946722E-8,-3.50196060308781257119E-7, 2.40648494783721712015E-6,-1.93619797416608296024E-5, 1.95215518471351631108E-4,-2.85781685962277938680E-3, 1.03923736576817238437E-1, 2.72062619048444266945E0};#endif#ifdef DECstatic unsigned short B[] = {0121724,0061352,0013041,0150076,0022245,0074324,0016172,0173232,0122603,0030250,0135670,0165221,0023123,0165362,0023561,0060124,0123456,0112436,0141654,0073623,0024022,0163557,0077564,0006753,0124374,0165221,0131014,0026524,0024737,0017512,0144250,0175451,0125312,0021456,0123136,0076633,0025674,0077720,0020125,0102607,0126265,0067543,0007744,0043701,0026664,0152702,0033002,0074202,0127273,0055234,0120016,0071733,0027712,0133200,0042441,0075515,0130346,0057000,0015456,0074470,0031012,0074441,0051636,0111155,0131461,0136444,0177417,0002101,0032166,0111743,0032176,0021410,0132674,0001224,0076555,0027060,0033441,0077430,0135226,0106663,0134242,0065610,0167155,0113447,0035114,0131304,0043664,0102163,0136073,0045065,0171465,0122123,0037324,0152767,0147401,0017732,0040456,0017275,0050061,0062120,};#endif#ifdef IBMPCstatic unsigned short B[] = {0x3a08,0x42c4,0x8c5d,0xbc5a,0x5ed3,0x838f,0xaf1a,0x3c74,0x1d52,0x1777,0x6615,0xbc90,0x2c0b,0x44ee,0x7d5e,0x3caa,0x8ef2,0xd875,0xd2a3,0xbcc5,0x81bd,0xefee,0x5ced,0x3ce2,0x85ab,0x3641,0x9d52,0xbcff,0x1f65,0x5915,0xe3e9,0x3d1b,0xcfb3,0xd4cb,0x4465,0xbd39,0xb0b1,0x040a,0x8ffa,0x3d57,0x88f8,0x61fc,0xadec,0xbd76,0x4f10,0x46c0,0x9ab8,0x3d96,0xce7b,0x9401,0x6b53,0xbdb7,0x2f6a,0x08a4,0x56d0,0x3dd9,0xcf27,0x0365,0xcbc0,0xbdfc,0xd24e,0x2a73,0x4f24,0x3e21,0xe088,0x9fe1,0x37a4,0xbe46,0xc461,0x668f,0xd27c,0x3e6e,0xa5c6,0x8fad,0x8052,0xbe97,0xd1b6,0x1752,0x2fe3,0x3ec4,0xb2e5,0x1dcd,0x4d71,0xbef4,0x908e,0x88f6,0x9658,0x3f29,0xb48a,0xbe66,0x6946,0xbf67,0x23fb,0xf9e0,0x9abe,0x3fba,0x2c8a,0xaa06,0xc3d7,0x4005};#endif#ifdef MIEEEstatic unsigned short B[] = {0xbc5a,0x8c5d,0x42c4,0x3a08,0x3c74,0xaf1a,0x838f,0x5ed3,0xbc90,0x6615,0x1777,0x1d52,0x3caa,0x7d5e,0x44ee,0x2c0b,0xbcc5,0xd2a3,0xd875,0x8ef2,0x3ce2,0x5ced,0xefee,0x81bd,0xbcff,0x9d52,0x3641,0x85ab,0x3d1b,0xe3e9,0x5915,0x1f65,0xbd39,0x4465,0xd4cb,0xcfb3,0x3d57,0x8ffa,0x040a,0xb0b1,0xbd76,0xadec,0x61fc,0x88f8,0x3d96,0x9ab8,0x46c0,0x4f10,0xbdb7,0x6b53,0x9401,0xce7b,0x3dd9,0x56d0,0x08a4,0x2f6a,0xbdfc,0xcbc0,0x0365,0xcf27,0x3e21,0x4f24,0x2a73,0xd24e,0xbe46,0x37a4,0x9fe1,0xe088,0x3e6e,0xd27c,0x668f,0xc461,0xbe97,0x8052,0x8fad,0xa5c6,0x3ec4,0x2fe3,0x1752,0xd1b6,0xbef4,0x4d71,0x1dcd,0xb2e5,0x3f29,0x9658,0x88f6,0x908e,0xbf67,0x6946,0xbe66,0xb48a,0x3fba,0x9abe,0xf9e0,0x23fb,0x4005,0xc3d7,0xaa06,0x2c8a};#endif#ifdef ANSIPROTextern double chbevl ( double, void *, int );extern double exp ( double );extern double i1 ( double );extern double log ( double );extern double sqrt ( double );#elsedouble chbevl(), exp(), i1(), log(), sqrt();#endifextern double PI;extern double MINLOG, MAXNUM;double k1(x)double x;{double y, z;z = 0.5 * x;if( z <= 0.0 )	{	mtherr( "k1", DOMAIN );	return( MAXNUM );	}if( x <= 2.0 )	{	y = x * x - 2.0;	y =  log(z) * i1(x)  +  chbevl( y, A, 11 ) / x;	return( y );	}return(  exp(-x) * chbevl( 8.0/x - 2.0, B, 25 ) / sqrt(x) );}double k1e( x )double x;{double y;if( x <= 0.0 )	{	mtherr( "k1e", DOMAIN );	return( MAXNUM );	}if( x <= 2.0 )	{	y = x * x - 2.0;	y =  log( 0.5 * x ) * i1(x)  +  chbevl( y, A, 11 ) / x;	return( y * exp(x) );	}return(  chbevl( 8.0/x - 2.0, B, 25 ) / sqrt(x) );}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -